
1

Announcements

Project 3
Reminder: due Thursday, March 8, 6pm
One of the files (integral.m) has been modified

linspace(a,b,n) ⇒ linspace(a,b,n+1)
Please use the updated version as the basis for your own
code

Prelim II: Thursday, March 15
Topics for today

Reading: CFile 9, Section 9.2
Vectorized code
Pre-allocating arrays
Logical arrays

Vectorized Code
Most Matlab operations are
designed to work on entire
vectors or entire matrices

This includes arithmetic,
relational, and logical
operations
Also includes most built-in
functions (e.g., sin, cos,
mod, floor, exp, log, etc.)

Code that operates on
entire vectors (or matrices)
instead of on scalars is said
to be vectorized code

Examples
x = [10 20 30];
y = 1:3;
z = [2 1 2];

% Addition, subtraction
x + y % [11 22 33]
x – y % [9 18 27]

% Mult, division, power
% Must include the DOT “.”
x .* y % [10 40 90]
x ./ y % [10 10 10]
x .^ z % [100 20 900]

Dot-Operators

Matlab is especially set up for Linear Algebra
Thus, “*”, “/”, and “^” correspond to matrix operations

Term-by-term operators use “.*”, “./”, and “.^”
Matlab documentation calls these “array operations” (as
opposed to “matrix operations”)

Why doesn’t Matlab include operators “.+” and “.-”?

Shapes Must Match
Examples

a = [4 8 12]
b = [1; 2; 4] % Column vector

a + b % Error
a + b’ % [5 10 16]

a ./ b % Error
a’ ./ b % [4; 4; 3]

Exception to shape matching
Scalars follow special rules
“A scalar can operate into
anything”

Scalar examples
a + 1 % [5 9 13]
10 + a % [14 18 22]
2 .* a % [8 16 24]
a ./ 2 % [2 4 6]
24 ./ a % [6 3 2]
a .^ 2 % [16 64 144]

Example: Pair-Sums
Given a vector, report the
vector of pair-sums (i.e., the
sums of adjacent items)

Example: The pair-sum for
[7 0 5 2] is [7 5 7]

Function header
function s = pairSum(v)
% Return vector v’s pair sums

Iterative code
function s = pairSum(v)
% Return vector v’s pair sums
s = [];
for k = 1: length(v)-1

s(k) = v(k) + v(k+1);
end

Vectorized code
function s = pairSum(v)
% Return vector v’s pair sums
s = v(1:end-1) + v(2:end);

Relational Operators

Comparison operators (e.g., “<”, “>”, “==”, etc.) also
operate term-by-term, creating arrays of boolean
values

Examples
a = [7 0 5 2 4 6]
b = 1:6
a < b % [0 1 0 1 1 0]
a == b % [0 0 0 0 0 1]

2

Logical Operators

Logical operators (e.g., “&”, “|”) also operate term-
by-term, creating arrays of boolean values

Recall: in Matlab, any nonzero value is considered to be
“true”

Examples
a = [7 0 5 2 4 6]
b = 1:6
a & b % [1 0 1 1 1 1]
a < b & mod(b,2) == 0 % [0 1 0 1 0 0]
a < b && mod(b,2) == 0 % Error

Short-Circuit Logical Operators

Why two versions (&, &&) of “and”?
In <operand> & <operand>, both operands are evaluated
before the &-operation is done
In <operand> && <operand>, the first operand is evaluated;
if it’s false then we don’t bother evaluating the other
operand

Similar for the two versions (|, ||) of “or”
In <operand> || <operand>, the first operand is evaluated;
if it’s true then we don’t bother evaluating the other
operand

Example use:
while (k > 0 && v(k) < 100) % Without short-circuit, Error
…

Example: How Many F’s?
Goal: Determine how many
times a particular character
appears in a string

Example: How many f’s in
“An example of efficiently
finding f”

Function header
function n = charCount(s,c)
% Report # of c’s in string s

Iterative code
function n = charCount(s,c)
% Report # of c’s in string s
n = 0;
for k = 1: length(s)

if s(k) == c
n = n +1;

end
end

Vectorized code
function n = charCount(s,c)
% Report # of c’s in string s
n = sum(c == s);

Testing Vectors of Logical Values
Sometimes we must condense a vector of logical values into a
single value, either true or false

To use in an if-statement or a loop, for instance
Matlab provides two functions for doing this: any and all

Each of these functions takes a single vector (or matrix) as its
argument
Function any returns true if and only if there is some value in
the vector that is true (nonzero)
Function all returns true if and only if all values in the vector
are true (nonzero)

For example, to check if two strings are equal, we can use the
following code

if length(strA) == length(strB) && all(strA == strB)
% Code doing something with the strings

end

Pre-allocating Arrays
Recall the iterative version
of the pair-sum example

function s = pairSum(v)
% Return vector v’s pair sums
s = [];
for k = 1: length(v)-1

s(k) = v(k) + v(k+1);
end

Vector s grows as needed
This works fine in Matlab,
but…
It’s slow

It will run faster if we pre-
allocate the array s

function s = pairSum(v)
% Return vector v’s pair sums
s = zeros(length(v) - 1);
for k = 1: length(v)-1

s(k) = v(k) + v(k+1);
end

Note though that
vectorized code is even
faster!

Improving Efficiency

For efficiency
Use vectorized code if possible
If you must use a loop, pre-allocate any arrays

We can write a program to test these ideas
Matlab provides built-in functions “tic” (start timer) and
“toc” (report time elapsed since tic)

