Announcements

* Project 3
= Reminder: due Thursday, March 8, 6pm
= One of the files (integral.m) has been modified
* linspace(a,b,n) = linspace(a,b,n+1)
. Plec;:(se use the updated version as the basis for your own
coae

* Prelim IT: Thursday, March 15
* Topics for today
+ Reading: CFile 9, Section 9.2
= Vectorized code
* Pre-allocating arrays
* Logical arrays

Vectorized Code

* Most Matlab operations are * Examples

designed to work on entire x = [10 20 30];
vectors or entire matrices y=13;
= This includes arithmetic, z=[212];
relational, and logical
operations

3 L % Addition, subtraction

= Also includes most built-in o 111 22 33
functions (e.g., sin, cos, xry . L !
mod, floor, exp, log, etc.) X-y % [918 27]

% Mult, division, power

* Code that operates on
% Must include the DOT "."

entire vectors (or matrices)

instead of on scalars is said XXy % [10 40 90]
to be vectorized code x./y % [10 10 10]
x."z % [100 20 900]

Dot-Operators

* Matlab is especially set up for Linear Algebra
= Thus, "*","/", and """ correspond to matrix operations

* Term-by-term operators use ".*", ./, and ".""

= Matlab documentation calls these “array operations” (as
opposed fo “matrix operations")

* Why doesn't Matlab include operators ".+" and *.-"?

Shapes Must Match

* Examples Exception to shape matching
= Scalars follow special rules
a=[4812] = “A scalar can operate into
b= [1; 2; 4] % Column vector anything"
a+b % Error * Scalar examples
a+b' % [5 10 16] a+1 % [5913]
10+a % [14 18 22]
a./b % Error 2*a % [8 16 24]
a./b % [4: 4 3] a./2 % [246]
24./a % [632]
a.”2 % [16 64 144]

Example: Pair-Sums

* Given a vector, report the * Iterative code
vector of pair-sums (i.e., the function s = pairSum(v)
sums of adjacent items) % Return vector v's pair sums
= Example: The pair-sum for s=[L
[7052]is[757] for k = 1: length(v)-1
s(k) = v(k) + v(k+1);
* Function header end

function s = pairSum(v)

% Refurn vector v's pair sums o \/gctorized code
function s = pairSum(v)
% Return vector V's pair sums
s = v(liend-1) + v(2:end);

Relational Operators
» Comparison operators (e.g., "<", ">", "==", etfc.) also
operate term-by-term, creating arrays of boolean
values

* Examples
a=[705246]
b=16
a<b %[010110]

a==b %[000001]

Logical Operators

* Logical operators (e.g., "&", “|") also operate term-
by-term, creating arrays of boolean values

= Recall: in Matlab, any nonzero value is considered to be
“true”

* Examples
az[705246]
b=16
ad&b %[101111]
a<b&mod(b,2)==0 %[010100]
a<b && mod(b,2) == 0 % Error

Short-Circuit Logical Operators

* Why two versions (&, &&) of “and"?
= In <operand> & <operand>, both operands are evaluated
before the &-operation is done
= In <operand> && <operand>, the first operand is evaluated;
if it's false then we don't bother evaluating the other
operand
* Similar for the two versions (|, ||) of “or"
= In<operand> || <operand>, the first operand is evaluated:;
if it's frue then we don't bother evaluating the other
operand
* Example use:
while (k > 0 && v(k) < 100) % Without short-circuit, Error

Example: How Many F's?

* Goal: Determine how many ¢ Iterative code
times a particular character function n = charCount(s,c)
appears in a string % Report # of c's in string s
= Example: How many f's in n=0;
"An example of efficiently for k = 1: length(s)
finding f" if s(k) == ¢
. n=n+l;
* Function header end

function n = charCount(s,c)
% Report # of c's in string s

end

* Vectorized code
function n = charCount(s,c)
% Report # of c's in string s
n=sum(c == s);

Testing Vectors of Logical Values

* Sometimes we must condense a vector of logical values into a
single value, either true or false
= To use in an if-statement or a loop, for instance
* Matlab provides two functions for doing this: any and all
= Each of these functions takes a single vector (or matrix) as its
argument
= Function any returns true if and only if there is some value in
the vector that is true (nonzero)
= Function all returns true if and only if a//values in the vector
are true (nonzero)
* For example, to check if two strings are equal, we can use the
following code
if length(strA) == length(strB) && all(strA == strB)
% Code doing something with the strings
end

Pre-allocating Arrays

* Recall the iterative version e It will run faster if we pre-

of the pair-sum example allocate the array s
function s = pairSum(v) function s = pairSum(v)
% Return vector v's pair sums % Return vector V's pair sums
s=[1 s = zeros(length(v) - 1);
for k = 1: length(v)-1 for k = 1: length(v)-1
s(k) = v(k) + v(k+1); s(k) = v(k) + v(k+1);
end end
* Vector s grows as needed * Note though that
= This works fine in Matlab, vectorized code is even
but... faster!

= It's slow

Improving Efficiency

* For efficiency
= Use vectorized code if possible
= If you must use a loop, pre-allocate any arrays

* We can write a program to test these ideas

= Matlab provides built-in functions “tic" (start timer) and
“toc” (report time elapsed since tic)

