

Matrices (2D Arrays)

Lecture 11 (Mar 1) CS $100 \mathcal{M}$ - Spring 2007

$2 \mathcal{D}$ Arrays (Matrices)

- Recall: An array is a named collection of data values organized into rows and/or columns

Creating a Matrix

- Matlab makes it easy to create a matrix
- Ulse brackets
- Comma or space separates items in same row
- Semicolon "; "indicates a ne wrow
- Example: $\mathcal{M}=\left[\begin{array}{ll}7 & 0 \\ 5 ; 246 ; 381\end{array}\right]$ creates

- Two indices are used to identify the position of a ite m in a matrix
- $\mathcal{M}(r, c)$ refers to the item in rowr, column c
- Iust like vectors, indices for matrices start at 1
- Example: $\mathcal{M}(2,3)$ refers to 6

Creating a Matrix, Continued

- You can build a new matrix out of smalfer matrices

Transpose of a Matrix

- If \mathcal{A} is a matrix then \mathcal{A} 'is the transpose of \mathcal{A}
- The transpose of a matrix just swaps the rows and the columns
up
- Iones (1,4); 1:4| works
- [ones(1,3); 1:4 | doesn't

- [ones (2,4); 1:4] works
- An item at position (r, c) becomes an item at position (c, r)
- Example: The transpose of $[1: 3 ; 4: 6]$ is
 for you (unspecified values are set to 0)
- Example: $\mathcal{B}(2,3)=77$

Finding the Dimensions of a Matrix

- Matlab provides a function for this: size((\mathcal{M})
- Examples
[nr, nc| $=\operatorname{size}(\mathcal{M}) \quad \% \mathcal{B o t h} \#$ of rows and \# of columns
$n r=\operatorname{size}(\mathcal{M}, 1) \quad \%$ \# of rows
$n c=\operatorname{size}(\mathcal{M}, 2) \quad \%$ \# of columns

Example: Finding $\operatorname{Min} \mathcal{V a l u e}$ in a Matrix

- Function header
function val $=$ minInMatrix (\mathcal{M})
\% Return min value in matrix \mathcal{M}
- Pseudocode:

Initialize val
Loop through all items in \mathcal{M} Ulpdate valat each item

- Resulting Code
function val $=$ minInMatrix (\mathscr{M})
\% Return min value in matrix \mathcal{M} val $=\mathfrak{M}(1,1)$;
$\langle n r, n c|=\operatorname{size}(\mathcal{M})$;
for $r=1: n r$
for $c=1: n c$
val $=\min (v a l, \mathcal{M}(r, c))$;
end
end

Pattern for \mathcal{T} raversing a Matrix \mathcal{M}

$$
\begin{aligned}
& \text { [nr, } n c]=\operatorname{size}(\mathcal{M}) \text {; } \\
& \text { for } r=1: n r \\
& \quad \text { for } c=1: n c \\
& \quad \% \text { Do something with } \mathcal{M}(r, c) \\
& \quad \text { end } \\
& \text { end }
\end{aligned}
$$

Submatrices

- Matlab colon notation can be used to easily create a submatrix of a matrix
- Example: Let $\mathcal{M}=\left[\begin{array}{llllllll}7 & 0 & 5 ; 246 ; 38 & 1\end{array}\right]$
- $\mathcal{M}(1: 2,1: 3)$ is

- $\mathcal{M}(2: 3,1: 2)$ is

- A single colon ": "can be used to represent "all indices"
- Thus $\mathcal{M}(1: 2,:)$ is the same as $\mathcal{M}(1: 2,1: 3)$

Neighborfiood of a Cell

- We define the neighborthood of a cell to be the cell itself and all adjacent cells (including diagonally adjacent)

Min of a Neighborfood

- Goal:
\mathcal{W} rite a function minInN(eighborfood(\mathcal{M}, row, col)
that reports the minimum value in ne ighborhood of cell(row, col) in matrix \mathcal{M}
- Function header

Function val $=\operatorname{minIn} \mathcal{N}(e$ ighborfood $(\mathcal{M}$, row, col $)$
\% Return min in neighborfood of (row, col) in \mathcal{M}

