

Announcements

- Prelim One
- Returned in Section
- Unclaimed in section or no indication of section
- Available for pickup at the ACCEL Green Room during consulting hours starting Ifursday
- Section
- In lab this week.
- Online evaluations of $\mathcal{T A} s$ start this week (see we bsite)
- Project 3
- Due Thursday, Marcf 8
- Posted last Saturday; typo in integral.m was corrected Monday

Topics

- Reading: CFile 5, Section 5.2
- Recall
- Mat lab vectors (1D arrays)
- Vector indices ("subscripts")
- Creating vectors
- / I, ":" notation, special functions, appending, combining
- Plans for today
- Characters \&strings
- More examples using Matlab vectors
- Ulse of plot()

Matlab Strings

- We fiave already made use of strings
- $n=$ input(乐ext number:);
- fprintf('The answer is \%d.; answer);
- 'Next number: 'and 'Ifie answer is \%d.'are both strings
- A string is made up of individualcharacters
- The string 'CS $100 \mathcal{M}$ rules'consists of 12 characters (8 (etters, 3 digits, and 1 space)
- In Matlab, a string is a vector of cfaracters
- Since a string is a vector, it uses the same indexing scheme as any other vector

Single Quotes

- Anytfing enclosed in single quotes is a string (even if it looks like sometring else)
- '100'is a string (i.e., a character vector) of length 3
- 100 is a numeric value
- 'pi'is a string of lengtf 2
- pi is predefined constant (=3.14159..)
- ' x 'is a character (also a string of length 1)
- x is a variable name

Strings as Vectors

Vectors

- Indexing
$v=\left[\begin{array}{lll}7 & 0 & 5\end{array}\right]$;
$x=v(3)$; $\quad \%$ x is 5
$v(1)=1 ; \quad \% \quad v$ is $\left[\begin{array}{lll}1 & 0 & 5\end{array}\right]$
- ":"notation
$v=2: 5 ; \quad \% v$ is [2 344 5]
- Appending
$v=\left[\begin{array}{lll}7 & 0 & 5\end{array}\right]$;
$v(4)=2 ; \quad \% v$ is $\left[\begin{array}{llll}7 & 0 & 5 & 2\end{array}\right]$
- Concatenation
$v=1 v\left[\begin{array}{ll}4 & 6\end{array}\right]$
$\% v$ is 17052461

Strings

- Indexing
$s=$ hello';
$c=s(2) ; \quad \% c$ is ${ }^{\prime}$
$s(1)=$ y' $\quad \%$ s is 'gelfo
- ":" notation
$s=a^{\prime} a^{\prime}: g^{\prime} ; \quad$ \%s is 'abcdefg
- Appending
$s=$ 'duck';
$s(5)=s^{\prime} ; \quad$ \% s is 'ducks ,
- Concatenation
$s=1 s$ 'quack']
\% s is 'ducks quack'

Some UlsefulString Functions

str $=$ 'CS 100 M rules ${ }^{\prime} ;$

$\begin{aligned} & \text { isletter(str) } \\ & \text { isspace(str) } \end{aligned}$	$\begin{aligned} & \%\left[\begin{array}{lllllllllll} 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \end{array} 1\right. \\ & \% \end{aligned}\left[\begin{array}{llllllllllllll} 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{array}\right]$
$s=$ lower (str);	\% s is 'cs 100 m rules ${ }^{\text {, }}$
$s=$ upper (str);	\% s is 'CS 100 M RULES '
ischar(str);	\% Is str a char array? 1 (= true)

isletter(str) $\quad \% 1110001011111$] isspace (str) $\quad \%\left[\begin{array}{llllllllll}0 & 0 & 0 & 0 & 100000]\end{array}\right.$
$s=$ lower (str); $\quad \% s$ is cs 100 m rules ,
$s=$ upper(str); $\quad \% s$ is 'CS $100 \mathcal{M}$ RULES ,
ischar(str); \quad Is strachar array? 1 (= true)

Example: Capitalize First Letters

- Goal:
- Write a function to capitalize just the first letter of each word in a string
- Assume the string consists entirely of letters and spaces
- Function fieader
function result $=$ capitalize (str)
\% Post: Convert string so each word has just first letter capitalized
\% Pre: Input string consists entirely of letters \& spaces

Post $=$ What is supposed to have happened when function is done (i.e., whit the function does)
Pre $=$ What assumptions are being made when function starts

ASCI I

(American Standard Code for Information Interchange) ASCII Code Character ASCIICode Character

48	'0'	97	${ }^{\prime}{ }^{\prime}$
49	'1'	98	'6'
50	'2'	99	'c'
51	3'	\ldots	\ldots
...	\cdots	122	'z'
65	'A'	\ldots	\ldots
66	\mathfrak{B}^{\prime}	127	$\mathcal{D E L}$
67	'C'		
\cdots	\cdots		
90	' z^{\prime} '		

Characters \leftrightarrow ASCII Code

str $=$ CS $100 \mathcal{M} ;$	\% Vector (1D array) of characters
code $=$ double (str);	\% Converts each character to a number;
	\% code is a standard Matlab vector
$s=$ char(code);	\% Converts a vector of numbers into
	\% a string (i.e., a vector of characters)

Character Aritfmetic

- You can do "matf" witf cfaracters

'd'- 'a'	\% Produces 3
'9, 8^{\prime},	\% Produces 1
' ${ }^{\prime}$ < ${ }^{\prime} d^{\prime}$ '	\% Produces 1 (= true)
${ }^{\prime}{ }^{\prime}<{ }^{\prime}{ }^{\prime}{ }^{\prime}$ '	\% Produces 0 ($=$ false)
$z^{\prime}<'^{\prime}$,	\% Produces 1 (=true)
	\% Because 90, the ASCII code for ' Z '; \% is less than 98, the ASCII code for '6
${ }^{\prime} a^{\prime}+2$	\% Produces 99
char ('a' 2)	\% Produces 'c'

Example: to Ulpper

- Goal: Write toUlpper(), our own version of Matlab's upper(), a function to convert a string to all uppercase
- We want to do this without using Matlab's function upper()
- Function feader
functionstr = toUlpper (str)
\% Post: Convert string so alf letters are upper case
\% Pre: Input is a string
- Idea: Note that 'a'-'A'has the same value as
'b' - ' \mathcal{B} 'which fas the same value as 'c'- \mathcal{C} ', etc.
- All we have to do is subtract the right number from a lowercase letter and we ll have the equivalent uppercase letter

Drawing in Matlab

$x=\left[\begin{array}{lll}0 & 3 & 6\end{array}\right] ;$
$y=\left(\begin{array}{ll}0 & 5\end{array}\right] ;$
plot(x, y, (or);

- This code will plot the points $(0,0),(3,5)$, and $(6,1)$
- 'or'indicates
- UConnect with lines

- 's':Markpoints with circles
- r : Ulse red
- Use help plot to see other options

Multiple Grapfs

- Plot will take any number of arguments grouped in threes (χ-values, y-values, format-info)
- You can actually leave out the format-info (default formatting is used)
- Example: Suppose $a, 6, c$, and d are vectors; plot (a, b, '-', c, d, '*g')
will draw 2 grapfs
- a vs. 6 as a line
- c vs.d as individual points marked by green stars
- Cength(a) must equal lengtf(6)
- lengtf(c) must equal lengtif(d)

Even Better Drawings

- You can add titles and labels to your drawings
title('Your Fabulous Title')
xlabel ('Name of \mathbf{x}-axis')
ylabel ('Name of y-axis')
- If you type help plot in the Command Window, there are links to these and other usefuldrawing. related functions

Drawing a Circle

- Note that cosine (or sine) of a vector produces a vector
function makecircle (n)
\% Make circle using nsegments
angles $=0: 2{ }^{*} p i / n: 2^{*} p i$;
$x=\cos ($ angles $)$;
$y=\sin ($ angles $)$;
plot $\left(x, y,{ }^{\prime}-g^{\prime}\right)$;
axis equal

Example: Random Walk

- Write a function randomWalk(n) to perform n steps of a random walk in the plane starting from $(0,0)$
- Function header: function randomWalk(n)
- At each step, possible moves are up, down, left, or right
- Display the walk
- This part turns out to be easy
- plot $\left(x, y, y^{\prime}\right.$ where x and y are vectors draws connecting lines from $(x(0), y(0))$ to $(x(1), y(1))$ to $(x(2), y(2))$ to...

Random Walk $\mathcal{A l g o r i t f m}$

- To do the drawing, we need
- Pseudocode all the steps stored in two vectors: x and y
- For nsteps we need vectors of lengtr $n+1$
- E.g., if we use vectors of length 2, we can hold
- The starting position $(0,0)$
- And one step to either $(1,0),(0,1),(\cdot 1,0)$, or $(0,-1)$

Load x and y with $n+1$ zeros for each step K

Choose a random direction Update $x(k+1)$ and $y(k+1)$ Draw the result

