

Announcements

- Prelim 1 Conflicts
- Our exam: Thursday, Fe b 22, at 7:30 pm
- You must contact Kelly Patwell (see we bsite) if you have any scheduling difficulties due to other exams
- Register your clicker!
- See the announcement on the $100 \mathcal{M}$ we bsite
- We need the registration to know which student goes with which clicker
- For this week section is backin the lab

\mathcal{F} unctions

- There are lots of functions that are built-in to Matlab
- Generalmath:
max, min, abs, sqrt
- Trigonometry: sin, cos, tan, asin, acos, atan
- Exponential: exp, log, $\log 2, \log 10$
- Integer computation: round, floor, ceil, fix, mod
- Matlab is designed so that a user can add new user. defined functions
- Goals for fiow a user. define d function should befiave
- Should have input
- Should have output
- Should be able to use a function without clobbering user's variables
- Should be able to use it just like we use a predefine d function

Functions	
- There are lots of functions that are built-in to Mat lab - Generalmatf: max, min, abs, sqrt - Trigonometry: sin, cos, tan, asin, acos, atan - Exponential: exp, log, $\log 2, \log 10$ - Integer computation: round, floor, ceil, fix, mod	- Matlab is designed so that a user can add new user. defined functions - Goals for how a user. defined function should behave - Should have input - Should have output - Should be able to use a function without clobbering user's variables - Should be able to use it just like we use a predefine d function

Script vs. Function Example

- Suppose we have the following two m-files (i.e., files with .m suffix)
function $y=f(x)$
$\% g(x)=x^{\wedge} 2+4 \star x+4 \% f(x)=x^{\wedge} 2+4 * x+4$
$y=x^{\wedge} 2+4 * x+4 ; \quad y=x^{\wedge} 2+4 * x+4 ;$
- We cando "the same stuff" with both, but the script is more cumbersome
$\gg x=10$;
>> g;
$\gg \mathrm{z}=\mathrm{y}$;

Simple Example Function

- Goal: a function that computes $f(x)=x^{2}+4 x+4$
- Code to do tfis (stored in an m-file):

$$
\text { function } y=f(x)
$$

\% Compute $f(x)=x^{\wedge} 2+4 * x+4$
$y=x^{\wedge} 2+4{ }^{2} x+4$;

- Ulsing this function (at the Command Window)
>> $\mathrm{f}(3)$
ans $=25$
> $\mathrm{f}(0)$
ans $=\quad 4$
>> $f(4)$
ans $=36$
- For the script, anything that used to be stored in x or y is nowgone

General Form for a Ulser-Defined Function

```
function output\mathscr{Arg}=\mathrm{ functionN(ame(arg1, arg2,..)}
% One line comment describing the function
% Additional description of function
<<ecutable code which at some point assigns to output\mathcal{Arg>}
```

- arg1, arg2, ...are defined when the function's code begins execution
- These input variables (calfed function parameters) hold the function arguments used when the function was called
- outputArg does not have a value until sometfing is assigned to it

Returning Multiple Values

function loutArg1, out Arg2,... = function认 $\mathcal{N a m e}(\arg 1, \arg 2, .$.
\% One line comment describing the function
\% Additional description of function
<code which at some point assigns to outभrg1 and outArg2>

- This kind of function is called using something like this $|x, y|=\operatorname{coords}(\operatorname{angle})$
- The first returned value is stored into x, the next into y, etc.

\mathcal{A} Function Example

- Goal: Cfoose a uniform-random number between L and u
- Recall: We needed a random number betwe en 1 and 9 for Project 1
- We used: $n=1+\delta^{*}$ rand (1);
- We can make this into a function:
function number $=$ myRand (L, U)
$\%$ myRand (L, U) is a random number between L and U number $=\mathrm{L}+(\mathrm{U}-\mathrm{L}) *$ rand (1);
- This is used as: $n=\operatorname{mytand}(1,9)$;

Scripts vs. Functions

- The programs you fave been using until now frave all been scripts
- A script is executed line by-line just as if you are typing it into the Command Window
- A change to a variable
witfin the script is a
change to the variable in
the Command Window
workspace
- A function has its own private workspace (for its variables) that does not interact with the Command Window workspace
- Variables are not shared between workspaces even be twe en workspaces even
if variables have the same if vari

Why Ulse Functions?

- Functions Keep driver programs cle an by kee ping coding details in separate, non-interacting files
- Functions can be independently tested
- Functions provide a usefullevelof abstraction, allowing one to e asily re-use code
- E.g., you don't need to know the details of how sqrt or sin are implemented

To Execute $y=m y \mathcal{F u n c t i o n}(x)$

- Matlab looks for an m-file that matches the function name
- Arguments are copied into the function's local parameters
- This scheme (copying values into parameters) is called pass.by. value
- Some programming languages use other argument-passing schemes (but Iava also uses pass-by-value)
- The function's code is executed using the function's own private workspace
- Once a function has beenexecuted, its workspace is deleted
- Except for the output-value which, in this example, is assigned to y
- If a function is called again, it starts with a new, empty workspace

Comments in Functions

- Some comments in a function are treated specially
- The entire block of comments after the function statement is printed whenever a user types help functionName at the Command Window
- The first line of this comment 6 lock is searched whenever a user types lookfor someWord at the Command Window
- Every function should have a comment 6lock (after the function statement)
- With a first line that succinctly descriges what the function does
- And, if necessary, additional lines that describe fiow one uses the function

