

Goal

- Create a Matlab program to
"throw darts" at a simple
target
- We use random numbers to determine where each dart lands
- We can use this as a way to approximate π
- Strategy
- First, we figure out a
program to "throw" one
dart
- Then we modify it to throw many darts (say, 1000)

Final Code for One Throw
initTarget:
one Throw:
close all
axis('square');
axis(l-11-11]);
hold on
the ta $=2^{*} p i^{*}(0: .01: 1)$;
plot(cos(theta), sin(theta), '- 'r');

$$
\begin{aligned}
& p x=2^{*} \operatorname{rand}(1) \cdot 1 ; \\
& p y=2^{*} \operatorname{rand}(1) \cdot 1 ; \\
& \text { if }\left(p x^{\wedge} 2+p y^{\wedge} 2<1\right) \\
& \quad \text { plot }\left(p x, p y,{ }^{\prime} o g^{\prime}\right) ; \\
& \text { else } \\
& \quad \text { plot }\left(p x, p y,{ }^{\prime}\right. \text { or'); } \\
& \text { end }
\end{aligned}
$$

IThis code draws a circle; we ll
discuss exactly what it's doing discuss exactly what it's doing later in the course]

Algorithm Outline for One "Tfrow"

- Compute position of dart
- If within unit circle
- Drawa "fit"
- Otfierwise
- Drawa "miss"

- Project 2
- Due Thursday, Feb 15, 6 pm
- Online since Friday
- For this week, section will be in the classroom instead of the lab

Fe $615,6 p$
riday
instead of the lab

Announcements

More For-Loop Examples

- You can use negative increments
- for $i=10: 1: 5 \quad$ \% i takes on the values $10,9,8,7,6,5$
- for $i=0:-2: 5 \quad$ \% itakes on the values $0,-2,-4$
- You can use non-integers
- for $\chi=0: 0.5: 2 \quad \%$ x takes on the values $0,0.5,1.0,1.5,2$
- for $\chi=0: p i / 3: p i \quad \%$ xtakes on the values $0, p i / 3,2 p i / 3, p i$
- Note that the upper bound is checked every time, even the first time through the loop
- for $\chi=5: 1: 0 \quad$ \% The loop body will not be executed
- for $x=10: 1$ \% The loop body will not be executed
- for $\chi=1:-1: 10 \quad$ \% The loop body will not be executed

Resulting Code

bound $=$ input('Specify bound: ');
sum $=0$
$\mathrm{n}=0$;
while sum < bound
$\mathrm{n}=\mathrm{n}+1$;
sum $=\operatorname{sum}+1 / n$;
end
fprintf('Bound \%d was exceeded at term \%d\n', bound, n);
while-loop syntax:
while \langle oole an condition>
Statements to execute (also called loop Gody)

Another Kind of Loop

- We don't always know exactly which values we th need
- Example: The sum $1+1 / 2+1 / 3+1 / 4+\ldots$ can be made arbitrarily large by using enough terms
- How many terms do we need to reach a given bound?
- Algorithm outline
- Determine bound
- Initialize sum
- Loop as long as sum < 6ound: - sum $=$ sum + next term
- Report number of terms used
- Matlab (and most other (anguages) provide a while. loop for this kind of situation

Finite Precision

- Finite precision implies
- There are just finite ly many numbers that can be represented
- There is a largest possible floating-point number
- In Matlab, this is called realmax

$$
\begin{aligned}
& \text { In Matlab, this is called realmax } \\
& \text { (typically, realmax }=1.7977 e+308 \text {) }
\end{aligned}
$$

- There is a smallest possible positive floating-point number
- In Matlab, this is called realmin (typically, realmin $=2.2251 \mathrm{e}-308$)
- There is a largest possible integer
- In Matla6, this is called intmax
(typically, intmax $=2147483647$)

$$
\text { (typically, intmax }=2147483647 \text {) }
$$

\mathcal{F} loating Point \mathcal{N} (umbers

- Matlab notation for 6.02×10^{23} is
- 6.02 e 23 or
- 6.02 E2 2 or
- $6.02 e+23$ or
- $6.02 \mathcal{E}+23$
- The 6.02 part is called the mantissa
- The 23 part is the exponent

Summary

- Matlab loops
- For-loop
- Write-loop
- For-loop increment-control
- <start value>: «increment>: «upper bound>
- <start value>: <upper bound>
- Numbers in Matlab
- Finite precision
- Only finitely many numbers are represented

