
1

Iteration

Lecture 5 (Feb 6)
CS100M – Spring 2007

Announcements

! Project 2
" Due Thursday, Feb 15, 6pm
" Online since Friday

! For this week, section will be in the classroom
instead of the lab

Goal
! Create a Matlab program to

“throw darts” at a simple
target

" We use random numbers to
determine where each dart
lands

" We can use this as a way to
approximate π

! Strategy
" First, we figure out a

program to “throw” one
dart

" Then we modify it to throw
many darts (say, 1000)

Algorithm Outline for One “Throw”

! Compute position of dart

! If within unit circle

" Draw a “hit”

! Otherwise

" Draw a “miss”

Final Code for One Throw
initTarget:

close all
axis('square');
axis([-1 1 -1 1]);
hold on

theta = 2*pi*(0:.01:1);
plot(cos(theta), sin(theta), '-r');

[This code draws a circle; we’ll
discuss exactly what it’s doing
later in the course]

oneThrow:

px = 2*rand(1) - 1;
py = 2*rand(1) - 1;
if (px^2 + py^2 <= 1)

plot(px, py, 'og');
else

plot(px, py, 'or');
end

Using a For-Loop

For-loop syntax:

count = 1000;
for n = 1:1:count

px = 2*rand(1) - 1;
py = 2*rand(1) - 1;
if (px^2 + py^2 <= 1)

plot(px, py, 'og');
else

plot(px, py, 'or');
end

end

for <index variable> = <lower bound> : <increment> : <upper bound>

Statements to execute (also called loop body)

end

2

More For-Loop Examples
! You can use negative increments

" for i = 10:-1:5 % i takes on the values 10, 9, 8, 7, 6, 5
" for i = 0:-2:-5 % i takes on the values 0, -2, -4

! You can use non-integers
" for x = 0: 0.5: 2 % x takes on the values 0, 0.5, 1.0, 1.5, 2
" for x = 0: pi/3: pi % x takes on the values 0, pi/3, 2pi/3, pi

! Note that the upper bound is checked every time, even the
first time through the loop
" for x = 5:1:0 % The loop body will not be executed
" for x = 10:1 % The loop body will not be executed
" for x = 1:-1:10 % The loop body will not be executed

Another Kind of Loop
! We don’t always know

exactly which values we’ll
need

" Example: The sum
1 + 1/2 + 1/3 + 1/4 + …
can be made arbitrarily
large by using enough
terms

" How many terms do we
need to reach a given
bound?

! Algorithm outline
" Determine bound
" Initialize sum
" Loop as long as sum < bound:

sum = sum + next term
" Report number of terms

used

! Matlab (and most other
languages) provide a while-
loop for this kind of
situation

Resulting Code
bound = input('Specify bound: ');
sum = 0;
n = 0;
while sum < bound

n = n + 1;
sum = sum + 1/n;

end
fprintf('Bound %d was exceeded at term %d\n', bound, n);

while-loop syntax:
while <boolean condition>

Statements to execute (also called loop body)

end

Floating Point Numbers

! Matlab notation for 6.02 x 1023 is
" 6.02e23 or
" 6.02E23 or
" 6.02e+23 or
" 6.02E+23

! The 6.02 part is called the mantissa
! The 23 part is the exponent

Finite Precision

! Finite precision implies
" There are just finitely many numbers that can be

represented
" There is a largest possible floating-point number

In Matlab, this is called realmax
(typically, realmax = 1.7977e+308)

" There is a smallest possible positive floating-point
number
In Matlab, this is called realmin

(typically, realmin = 2.2251e-308)
" There is a largest possible integer

In Matlab, this is called intmax
(typically, intmax = 2147483647)

Summary

! Matlab loops
" For-loop
" While-loop

! For-loop increment-control
" <start value> : <increment> : <upper bound>
" <start value> : <upper bound>

! Numbers in Matlab
" Finite precision
" Only finitely many numbers are represented

