
1

More Branching,
More Conditionals,
Built-In Functions

Lecture 4 (Feb 1)
CS100M – Spring 2007

Announcements

Project 2
Due Thursday, Feb 15
Should appear online by this weekend

For this next week, section will be in the classroom
instead of the lab

Topics

Recall previous lecture
Branching (if-statements)
Comparisons

Plans for today
More branching
Logical operations
Some useful built-in functions

Several Forms of if-Statement

Short
if condition

statements
end

Medium
if condition

statements
else

statements
end

Long
if condition

statements
elseif condition

statements
elseif condition

statements
else

statements
end

Playing with Comparisons

Suppose x has the value 5

What is the result of typing
x < 10

in the Matlab Command Window?

What is the result of typing
6 < x

in the Matlab Command Window?

What is the result of typing
6 < x < 10

in the Matlab Command Window?

A: false

B: true

Logical Constructs

Which of these conditional expressions tests for a
valid measurement of less than 12 inches?

A: x < 12 && x >= 0

B: 0 <= x || x < 12

C: ~(x < 0 || x >= 12)

D: all of the above

2

Short-Circuit Operators
&& (and) and || (or) are both short-circuit
operators

Once the answer is known the remaining part of the
expression is not evaluated

Example
x >= 0 && sqrt(x) > 2.5

If x is less than 0 then the square root is never
calculated

There are non-short-circuit versions (& and |), but
you should normally use the short-circuit version

Some Built-In Functions
Most standard mathematical
functions are available

When in doubt type
help functionName
in the Command Window

Trigonometric functions
(using radians, not degrees)

sin
cos
tan
asin (inverse sin)
acos (inverse cos)
atan (inverse tan)

Log, exponential functions
exp (exponential)
log (natural logarithm)
log10 (base-10 logarithm)
log2 (base-2 logarithm)
Also, x^p computes xp

Functions for integer
computation

floor
ceil
round
fix
mod

A few more: max, min, abs

floor

p = floor(x)

p is assigned the largest integer less than or equal
to x

floor(-3.5) has the value –4
floor(3.5) has the value 3
floor(5) has the value 5
floor(3.2) has the value 3
floor(3.7) has the value 3

ceil

p = ceil(x)

p is assigned the smallest integer greater than or
equal to x

ceil(-3.5) has the value –3
ceil(3.5) has the value 4
ceil(5) has the value 5
ceil(3.2) has the value 4
ceil(3.7) has the value 4

round

p = round(x)

p is assigned the integer that is closest to x
In case of a tie, use the integer that is farther from 0

round(-3.5) has the value –4
round(3.5) has the value 4
round(5) has the value 5
round(3.2) has the value 3
round(3.7) has the value 4

fix

p = fix(x)

p is assigned the closest integer between 0 and x
(i.e., round toward 0)

fix(-3.5) has the value –3
fix(3.5) has the value 3
fix(5) has the value 5
fix(3.2) has the value 3
fix(3.7) has the value 3

3

mod

r = mod(p, q)

r is assigned the remainder when we divide p by q

mod(5, 2) has the value 1
mod(704, 10) has the value 4
mod(30, 7) has the value 2

Boolean Expression Example

To test if x is divisible by both 3 and 5

if (mod(x, 3) == 0 && mod(x, 5) == 0)
disp(‘Divisible by both’)

else
disp(‘Not divisible by both’)

end

Another Boolean Expression Example

To test if integer y represents a Leap Year
Year y is a Leap Year if

It is divisible by 4
Exception: century years are not Leap Years
Exception: years divisible by 400 are Leap Years

Write a program to determine if a given year is a
Leap Year

Revisiting the Min-Finding Program
% Determine min value of q(x) = x^2 + b*x + c
% in the interval [L, R]
xc = - b/2; % Compute xc
if (L <= xc && xc <= R)

minValue = xc^2 + b*xc + c;
else % Compute min of q(L) and q(R)

minValue = min(L^2 + b*L + c, R^2 + b*R + c);
end

fprintf(‘Min value is %f\n’, minValue)

Playing with Built-In Functions

What is round(round(16/3)/3)?

What is floor(floor(16/3)/3)?

What is ceil(ceil(16/3)/3)?

A: 1 C: 3B: 2

A: 1 C: 3B: 2

A: 1 C: 3B: 2

Creating a Program

An algorithm is an idea
To use an algorithm you must choose a programming language
and implement the algorithm

State problem

Define inputs & outputs

Design algorithm

Convert algorithm to program

Test & debug

