

Announcements

- Project 2
- Due Thursday, Feb 15
- Should appear online by this weekend
- For this next week, section will be in the classroom instead of the lab

Topics

Several Forms of if-Statement

- Short
if condition statements
end
- Medium
if condition statements
else
statements
end

Playing with Comparisons

- Suppose \times has the value 5

Logical Constructs

- Which of these conditional expressions tests for a valid measurement of less than 12 inches?

A: $x<12 \& \& x>=0$
B: $0<=x| | x<12$
C: $\sim(x<0 \| x>=12)$

D: all of the above

- What is the result of typing

$$
x<10
$$

in the Matlab Command Window?

- What is the result of typing

$$
6<x
$$

in the Matlab Command Window?

- What is the result of typing
$6<x<10$
in the Matlab Command Window?

B: true

Short-Circuit Operators

- \&\& (and) and II (or) are both short-circuit operators
- Once the answer is known the remaining part of the expression is not evaluated
- Example

$$
x>=0 \quad \& \& \quad \operatorname{sqrt}(x)>2.5
$$

- If x is less than 0 then the square root is never calculated
- There are non-short-circuit versions (\& and |), but you should normally use the short-circuit version

Some Built-In Functions

- Most standard mathematical functions are available
- When in doubt type
help functionName in the Command Window
- Trigonometric functions (using radians, not degrees)
- \sin
- cos
- tan
- asin (inverse sin)
- acos (inverse cos)
- atan (inverse tan)
- Log, exponential functions
- \exp (exponential)
- log (natural logarithm)
- $\log 10$ (base-10 logarithm)
- $\log 2$ (base-2 logarithm)
- Also, $x^{\wedge} p$ computes x^{p}
- Functions for integer computation
- floor
- ceil
- round
- fix
- mod
- A few more: max, min, abs
floor
$p=$ floor (x)
- p is assigned the largest integer less than or equal
to x
floor(-3.5) has the value -4
floor(3.5) has the value 3
floor(5) has the value 5
floor(3.2) has the value 3
floor(3.7) has the value 3
$\mathrm{p}=\operatorname{ceil}(x)$
- p is assigned the smallest integer greater than or
equal to x
ceil(-3.5) has the value -3
ceil(3.5) has the value 4
ceil(5) has the value 5
ceil(3.2) has the value 4
ceil(3.7) has the value 4

round

$p=\operatorname{round}(x)$

- p is assigned the integer that is closest to x
- In case of a tie, use the integer that is farther from 0
round (-3.5) has the value -4
round(3.5) has the value 4
round(5) has the value 5
round(3.2) has the value 3
round(3.7) has the value 4

fix

$p=f i x(x)$

- p is assigned the closest integer between 0 and x (i.e., round toward 0)
fix(-3.5) has the value -3
fix(3.5) has the value 3
fix(5) has the value 5
fix(3.2) has the value 3
fix(3.7) has the value 3
$\quad \bmod$
$r=\bmod (p, q)$
$\quad r$ is assigned the remainder when we divide p by q
$\bmod (5,2)$ has the value 1
$\bmod (704,10)$ has the value 4
$\bmod (30,7)$ has the value 2

Boolean Expression Example

- To test if x is divisible by both 3 and 5
if $(\bmod (x, 3)==0 \& \& \bmod (x, 5)==0)$ disp('Divisible by both')
else disp('Not divisible by both') end

Another Boolean Expression Example

- To test if integer y represents a Leap Year
- Year y is a Leap Year if
- It is divisible by 4
- Exception: century years are not Leap Years
- Exception: years divisible by 400 are Leap Years
- Write a program to determine if a given year is a Leap Year

Revisiting the Min-Finding Program
\% Determine min value of $q(x)=x^{\wedge 2}+b^{*} x+c$
\% in the interval [L, R]
$\mathrm{xc}=-\mathrm{b} / 2$; $\quad \%$ Compute x_{c}
if (L <= xc \&\& $x c<=R$)
minValue $=x c^{\wedge 2}+b^{*} x c+c ;$
else \quad \% Compute min of $q(L)$ and $q(R)$
minvalue $=\min \left(L^{\wedge} 2+b^{*} L+c, R^{\wedge} 2+b^{*} R+c\right) ;$
end
fprintf(‘Min value is \%f\n', minvalue)

Playing with Built-In Functions

- What is round(round $(16 / 3) / 3)$?

\section*{| $\mathrm{A}: 1$ | $\mathrm{~B}: 2$ | $\mathrm{C}: 3$ |
| :--- | :--- | :--- |}

-What is floor $(f \operatorname{loor}(16 / 3) / 3)$?
A: $1 \quad \mathrm{~B}: 2 \quad \mathrm{C}: 3$

- What is ceil(ceil(16/3)/3)?
$\mathrm{A}: 1 \quad \mathrm{~B}: 2 \mathrm{C}: 3$

