

Announcements

- Project 1
- Due Thursday, Feb 1 (6pm)
- Section this week
- Go to your lab, not your classroom
- Check the course website if you haven't found your lab yet
- Two new Sections have been added
- Register before attending one of these
- Section 20 (W at 12:20)
- Section 21 (W at 1:25)

Topics

- Recall previous lecture
- Variables and the assignment statement
- Input and output
- Input: $\quad y=\operatorname{input}($ 'Give me a y-value.');
- Output: fprintf('The answer is \%f.', answer)
- Plans for today
- Branching; nested branching

Finding the Minimum
Consider the quadratic function

$$
q(x)=x^{2}+b x+c
$$

on the interval $[L, R]$

Finding the Minimum

Consider the quadratic function

$$
q(x)=x^{2}+b x+c
$$

on the interval $[L, R]$:

- Which is smaller, $q(L)$ or $q(R)$?

Min-Finding Algorithm

Calculate $q(L)$
Calculate $q(R)$
If $q(L)<q(R)$
print " $q(L)$ less than $q(R)^{\prime}$
Otherwise
print " $q(L)$ greater than or equal to $q(R)$ "

Relational Operators

```
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
~= Not equal to
```

Do these two code fragments do the same thing?	
\% given x, y if ($x>y$) disp('alpha') else disp('beta') end	\% given x, y if ($y>x$) disp('beta') else disp('alpha') end
A: yes B: no	

Do these two code fragments
same thing?

\% given x, y
if $(x>y)$
disp('alpha')
else given x, y
disp('beta')
if $(x>y)$
end

A: yes B: no

Goal

- Create a Matlab program to determine the minimum value of

$$
q(x)=x^{2}+b x+c
$$

in the interval $[L, R]$

- We know how to do this using Calculus
- The answer has to be one of $q\left(x_{c}\right), q(L)$, or $q(R)$ where x_{c} is the critical point (where the derivative is zero)
- But we use $q\left(x_{c}\right)$ only if x_{c} is in $[L, R]$

Algorithm (with More Detail)

- Compute X_{c}
- If $L \leq x_{c} \leq R$
- Answer is $q\left(x_{c}\right)$
- Otherwise
- Compute $q L=q(\mathrm{~L})$; compute $q \mathrm{R}=q(\mathrm{R})$
- If $q L$ < q R
$\left.\begin{array}{l}\text { - Answer is } q L \\ \text { therwise }\end{array}\right\} \begin{aligned} & \text { We have an if-construct } \\ & \text { inside another if-construct }\end{aligned}$
- Otherwise \quad Answer is qR $\} \begin{aligned} & \text { we have an if-construct } \\ & \text { inside another if-construct }\end{aligned}$
- Indentation helps make the program readable
- But Matlab doesn't enforce indentation rules grade

Things to Note

- An if-construct can appear within a branch, just like any other kind of statement
- Matlab (and most other programming languages) treat comparison operators as binary operators
- Thus some kinds of standard math notation do not work in a Matlab program
- Math: If $1<x<10$ then...
- Matlab: if $(1<x \& \& x<10)$...

Indentation

- Your projects are graded on both correctness and style
- Appropriate indentation is necessary to achieve a good style
- The Matlab Editor helps with the indentation
- You can override this, but you shouldn't

Logical And

- How do we check if x_{c} is in [L, R]?
- We check $L \leq x_{c}$ and $x_{c} \leq R$
- In our code: (L <= xc \&\& xc <= R)
- Rules for logical and:

x	y	x and y
F	F	F
F	T	F
T	F	F
T	T	T

Logical Or

- Alternately, we could check if x_{c} is outside of [L,R]

Logical Operators

- Logical and: \&\&
- Logical or: ||
- Logical not: ~
- Matlab uses 0 for false and nonzero for true
- Uses 1 for true when Matlab generates it, but will take any nonzero as true in a logical expression
- Matlab also has predefined logical constants:
- false $(=0)$ and true $(=1)$

x	y	x ory
F	F	F
F	T	T
T	F	T
T	T	T

Comparison Operators

- Equal
- Not equal
- Less than
- Greater than
- Less than or equal
- Greater than or equal $>=$
- Each of these operators produces a boolean result
(i.e., the result is either true or false)
- Note use of $==$

Creating a Program

- As an example, we'll create a program to find areas for some simple shapes
- Program outline
- Ask for a shape choice
- Ask for measurements
- Report the area
- We'll use triangle, rectangle, and square

Each of these operators produces a boolean result

- Note use of == to compare for equality

Several Forms of if-Statement

Playing with Comparisons

- Suppose \times has the value 5
- What is the result of typing

$$
x<10
$$

in the Matlab Command Window?

- What is the result of typing

$$
6<x
$$

in the Matlab Command Window?

- What is the result of typing

$$
6<x<10
$$

in the Matlab Command Window?

