
1

Branching (if-else)

Lecture 3 (Jan 30)
CS100M – Spring 2007

Announcements

Project 1
Due Thursday, Feb 1 (6pm)

Section this week
Go to your lab, not your classroom

Check the course website if you haven’t found your lab yet

Two new Sections have been added
Register before attending one of these

Section 20 (W at 12:20)
Section 21 (W at 1:25)

Topics

Recall previous lecture
Variables and the assignment statement
Input and output

Input: y = input(‘Give me a y-value.’);
Output: fprintf(‘The answer is %f.’, answer)

disp(‘Hi there!’)

Plans for today
Branching; nested branching

Finding the Minimum

Consider the quadratic function

q(x) = x2 + bx + c

on the interval [L , R]

x

q(x)

L < R

Finding the Minimum

Consider the quadratic function

q(x) = x2 + bx + c

on the interval [L , R]:

Which is smaller, q(L) or q(R) ?

Does q’(x) have a zero in [L , R]?

What is the minimum value of q(x) in [L , R]?

Min-Finding Algorithm

Calculate q(L)
Calculate q(R)
If q(L) < q(R)

print “q(L) less than q(R)”
Otherwise

print “q(L) greater than or equal to q(R)”

2

Equivalent Matlab Fragment

% Min-Finding Fragment
qL= L*L + b*L + c; % q(L)
qR= R*R + b*R + c; % q(R)
if (qL < qR)

fprintf(‘qL less than qR\n’);
else

fprintf(‘qL >= qR\n’);
end

Relational Operators

< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
~= Not equal to

Do these two code fragments do the
same thing?

% given x, y
if (x > y)

disp(‘alpha’)
else

disp(‘beta’)
end

% given x, y
if (y > x)

disp(‘beta’)
else

disp(‘alpha’)
end

A: yes B: no

Do these two code fragments do the
same thing?

% given x, y
if (x > y)

disp(‘alpha’)
else

disp(‘beta’)
end

% given x, y
if (x > y)

disp(‘alpha’)
end
if (y >= x)

disp(‘beta’)
end

A: yes B: no

Nested Branching

Goal

Create a Matlab program to determine the minimum
value of

q(x) = x2 + bx + c
in the interval [L, R]

We know how to do this using Calculus
The answer has to be one of q(xc), q(L), or q(R) where xc
is the critical point (where the derivative is zero)
But we use q(xc) only if xc is in [L, R]

3

Algorithm Outline

Compute xc

If xc ∈ [L, R]

Answer is q(xc)

Otherwise

Answer is min of q(L) and q(R)

We already know

how to do this

Algorithm (with More Detail)

Compute xc

If L ≤ xc ≤ R

Answer is q(xc)

Otherwise
Compute qL = q(L); compute qR = q(R)
If qL < qR

Answer is qL
Otherwise

Answer is qR

We have an if-construct
inside another if-construct

Program Fragment
% Determine min value of q(x) = x^2 + b*x + c
% in the interval [L, R]
xc = - b/2; % Compute xc

if (L <= xc && xc <= R)
minValue = xc^2 + b*xc + c;

else % Compute min of q(L) and q(R)
qL = L^2 + b*L + c;
qR = R^2 + b*R + c;
if (qL < qR)

minValue = qL;
else

minValue = qR;
end

end
fprintf(‘Min value is %f\n’, minValue)

Things to Note

An if-construct can appear within a branch, just
like any other kind of statement

Matlab (and most other programming languages)
treat comparison operators as binary operators

Thus some kinds of standard math notation do not work in
a Matlab program

Math: If 1 < x < 10 then…
Matlab: if (1 < x && x < 10)…

Indentation

Indentation helps make the program readable

But Matlab doesn’t enforce indentation rules
Your projects are graded on both correctness and style

Appropriate indentation is necessary to achieve a good style
grade

The Matlab Editor helps with the indentation
You can override this, but you shouldn’t

Logical And

How do we check if xc is in [L, R]?
We check L ≤ xc and xc ≤ R
In our code: (L <= xc && xc <= R)

Rules for logical and:

TTT
FFT
FTF
FFF

x and yyx

4

Logical Or

Alternately, we could check if xc is outside of [L, R]
We check xc ≤ L or R ≤ xc

In our code: (xc <= L || R <= xc)

Rules for logical or:

TTT
TFT
TTF
FFF

x or yyx

Logical Operators

Logical and: &&
Logical or: ||
Logical not: ~

Matlab uses 0 for false and nonzero for true
Uses 1 for true when Matlab generates it, but will take
any nonzero as true in a logical expression
Matlab also has predefined logical constants:

false (= 0) and true (= 1)

Comparison Operators

Equal ==
Not equal ~=
Less than <
Greater than >
Less than or equal <=
Greater than or equal >=

Each of these operators produces a boolean result
(i.e., the result is either true or false)

Note use of == to compare for equality

Creating a Program

As an example, we’ll create a program to find areas
for some simple shapes

Program outline
Ask for a shape choice
Ask for measurements
Report the area

We’ll use triangle, rectangle, and square

Several Forms of if-Statement

Short
if condition

statements
end

Medium
if condition

statements
else

statements
end

Long
if condition

statements
elseif condition

statements
elseif condition

statements
else

statements
end

Playing with Comparisons

Suppose x has the value 5

What is the result of typing
x < 10

in the Matlab Command Window?

What is the result of typing
6 < x

in the Matlab Command Window?

What is the result of typing
6 < x < 10

in the Matlab Command Window?

A: false

B: true

