Branching (if-else)

Lecture 3 (Jan 30)
CS100M - Spring 2007

Announcements

* Project 1
* Due Thursday, Feb 1 (6pm)

* Section this week
= Go to your lab, not your classroom
* Check the course website if you haven't found your lab yet

* Two new Sections have been added
¢ Register before attending one of these
= Section 20 (W at 12:20)
= Section 21 (W at 1:25)

Topics

* Recall previous lecture
= Variables and the assignment statement
= Input and output
¢ Input: y = input('Give me a y-value.’);
¢ Output: fprintf(The answer is %f., answer)
disp('Hi therel’)

* Plans for today
= Branching; nested branching

Finding the Minimum

Consider the quadratic function
q(x)=x2+bx+c

on the interval [L , R]

q(x)

L<R

Finding the Minimum
Consider the quadratic function
q(x)=x2+bx+c

on the interval [L , R]:

= Which is smaller, q(L) or q(R) ?

= Does q'(x) have a zero in [L , R]?

= What is the minimum value of q(x) in [L , R]?

Min-Finding Algorithm

Calculate q(L)
Calculate q(R)
If q(L) < q(R)
print "q(L) less than q(R)"
Otherwise
print “q(L) greater than or equal to q(R)"

Equivalent Matlab Fragment

% Min-Finding Fragment

gL=L*L +b*L +¢; % q(L)
qR=R*R +b*R + ¢; % q(R)
if (qL < gR)

fprintf(‘'qL less than qR\n’);
else

fprintf('qL >= qR\n');
end

Relational Operators

< Less than

> Greater than

<= Less than or equal to

>z Greater than or equal to
== Equal to

~= Not equal to

Do these two code fragments do the

same thing?
% given x, y % given x,y
if (x>y) if (y>x)
disp(‘alpha’) disp('beta’)
else else
disp('beta’) disp(‘alpha’)
end end

Do these two code fragments do the

Nested Branching

same thing?

% given x, y % given x, 'y
if (x>vy) if (x>vy)

disp(‘alpha’) disp(‘alpha’)
else end

disp(‘beta’) if (y >= x)
end disp(‘beta’)

end
Goal

* Create a Matlab program to determine the minimum
value of
q(x)=x2+bx+c
in the interval [L, R]

* We know how to do this using Calculus

= The answer has to be one of q(x.), q(L), or q(R) where x,
is the critical point (where the derivative is zero)
= But we use q(x,) only if x.is in [L, R]

Algorithm Outline
* Compute x,
*If x_ e [L,R]
= Answer is q(x.)

%%
* Otherwise \Natz\l'fgdo TS
o

= Answer is min of q(L) and q(R) é

Algorithm (with More Detail)

* Compute x,

*IfL<x <R
= Answer is q(x.)

* Otherwise
= Compute qL = q(L): compute gR = q(R)
= If gL <qR

+ Answer is qL
q We have an if-construct

= Otherwise inside another if-construct
+ Answer is qR

Program Fragment

% Determine min value of q(x) = x"2 + b*x + ¢
% in the interval [L, R]
xc=-b/2; % Compute x,
if (L <= xc && xc <= R)
minValue = xc™2 + b*xc + ¢;
else % Compute min of q(L) and q(R)
qL=L"2+b*L+c
gR=R"2+b*R+c;
if (gL < qR)
minValue = qL;
else
minValue = qR;
end
end
fprintf(‘Min value is %f\n’, minValue)

Things to Note

* An if-construct can appear within a branch, just
like any other kind of statement

* Matlab (and most other programming languages)
treat comparison operators as binary operators
= Thus some kinds of standard math notation do not work in
a Matlab program
¢ Math: If 1< x < 10 then...
+ Matlab: if (1<x && x < 10)...

Indentation

* Indentation helps make the program readable

* But Matlab doesn't enforce indentation rules
= Your projects are graded on both correctness and style

+ Appropriate indentation is necessary o achieve a good style
grade

= The Matlab Editor helps with the indentation
+ You can override this, but you shouldn't

Logical And
* How do we check if x_ isin [L, R]?

= We check L < x.and x. <R
= Inour code: (L <= XCc && Xc <= R)

* Rules for logical and:

X
=]
=
[°%
~<

—H|4|/™m ™ x
=M 4 m=<
—-l'n'n'n|

Logical Or
* Alternately, we could check if x_ is outside of [L, R]

= We check x, <L or R< x,
= Inour code: (xc <= L || R <= xc)

* Rules for logical or:

x y xory
F F F
F T T
T F T
T T T

Logical Operators

* Logical and: &&
* Logical or: |
* Logical not: ~

* Matlab uses O for false and nonzero for true
= Uses 1 for true when Matlab generates it, but will take
any nonzero as true in a logical expression
= Matlab also has predefined logical constants:
+ false (= 0) and true (= 1)

Comparison Operators

* Equal ==
* Not equal ~=
* Less than

* Greater than

* Less than or equal <=
* Greater than or equal >=

* Each of these operators produces a boolean result
(i.e., the result is either true or false)

* Note use of == to compare for equality

Creating a Program

* As an example, we'll create a program to find areas
for some simple shapes
= Program outline
+ Ask for a shape choice
+ Ask for measurements
+ Report the area

= We'll use triangle, rectangle, and square

Several Forms of if-Statement

* Short * Long
if if
statements statements
end elseif
statements
elseif
¢ Medium statements
if else
statements statements
end
else

statements
end

Playing with Comparisons
* Suppose x has the value 5

* What is the result of typing
x < 10
in the Matlab Command Window?

= What is the result of typing
6 < x
in the Matlab Command Window?

