
Chapter 4

Exponential Growth

§4.1 Powers
User-defined function, function declarations, preconditions and post conditions,
parameter lists, formal and actual parameters, functions that call other functions,
scope rules, development through generalization.

§4.2 Binomial Coefficients
Weakening the precondition

There are a number of reasons why the built-in sin function is so handy. To begin with, it
enables us to compute sines without having a clue about the method used. It so happens that the
design of an accurate and efficient sine function is somewhat involved. But by taking the “black
box” approach, we are able to be effective sin-users while being blissfully unaware of how the
built-in function works. All we need to know is that sin expects a real input value and that it
returns the sine of that value interpreted in radians.

Another advantage of sin can be measured in keystrokes and program readability. Instead
of disrupting the “real business” of a program with lengthy compute-the-sine fragments, we
merely invoke sin as required. The resulting program is shorter and reads more like traditional
mathematics.

Most programming languages come equipped with a library of built-in functions. The design-
ers of the language determine the library’s content by anticipating who will be using the language.
If that group includes scientists and engineers, then invariably there will be built-in functions for
the sine, cosine, log, and exponential functions because they are of central importance to work
in these areas.

It turns out that if you need a function that is not part of the built-in function library, then
you can write your own. The art of being able to write efficient, carefully organized functions
is an absolutely essential skill for the computational scientist because it suppresses detail and
permits a higher level of algorithmic thought.

To illustrate the mechanics of function writing we have chosen a set of examples that highlight
a number of important issues. On the continuous side we look at powers, exponentials, and logs.
These functions are monotone increasing and can be used to capture different rates of growth.

115

116 Chapter 4. Exponential Growth

Factorials and binomial coefficients are important for counting combinations. We bridge the
continuous/discrete dichotomy through a selection of problems that involve approximation.

4.1 Powers

To raise x to the n-th power, in Matlab we use the expression xˆn. Some programming lan-
guages, however, do not include a power operator and a programmer would have to write a code
fragment, such as the one below, to evaluate xn:

xpower= 1;
for k= 1:n

xpower= x*xpower; %{xpower = xˆk}
end

Each pass through the loop raises the “current” power of x by one. Without the power operator, it
is not unreasonable to insert this single-loop calculation as required in a program that requires the
computation of a power in just a few places. However, it is not hard to imagine a situation where
exponentiations are required many times throughout a program. It is then a major inconvenience
to be personally involved with each and every powering if the power operator is not available.
The script Example4 1 reinforces the point. The program illustrates the kind of tedium that
is involved when the same computation is repeated over and over again. There is a threefold
application of the exponentiation “idea.” If we didn’t know about Matlab’s built-in power
operator, then we would like to specify once and for all how powers are computed and then just
use that specification to get xn, yn, and zn without repeating any code.

Fortunately, there is a way to do this and it involves the creation and use of a programmer-
defined function. The concept is illustrated in Example4 2. In this program, the function has the
name pow and, after its creation, it is invoked, or referenced, by script file eg4 2.m. The function
is saved in a file separate from the script file and it has a filename that is the same as the function
name. The function filename also has the extention .m.

Let us look at how a function is structured. A casual glance at the function code

function apower = pow(a, n)
% Post: apower=aˆn
% Pre: n>=0

apower= 1;
for k= 1:n

apower= apower*a; % {apower=aˆk}
end

shows that a function resembles other scripts that we have written. The last few lines are familiar-
looking code that comprises the function body. However, the function begins with a line of code
that contains the keyword function, the function name, an output argument list, and an input
parameter list. This line of code is called the function header:

function apower︸ ︷︷ ︸
output argument

= pow︸︷︷︸
function name

(a , n︸ ︷︷ ︸
input parameter list

)

4.1. Powers 117

% Example4 1: {Examines |xˆn + yˆn - zˆn| for real x,y,z and whole number n.}

x= input(’Enter x: ’);

y= input(’Enter y: ’);

z= input(’Enter z: ’);

n= input(’Enter nonnegative integer n: ’);

xpower= 1;

ypower= 1;

zpower= 1;

for k= 1:n

% {xpower=xˆk; ypower=yˆk; zpower=zˆk}
xpower= xpower*x;

ypower= ypower*y;

zpower= zpower*z;

end

value= abs(xpower+ypower-zpower);

fprintf(’|xˆn + yˆn - zˆn| = %f\n’, value)

Output:

Enter x: 3
Enter y: 2
Enter z: 5
Enter nonnegative integer n: 3
|xˆn + yˆn - zˆn| = 90.000000

The input parameter list is made up of the function’s formal parameters. The function pow
has two formal parameters: a and n. A parameter is like a variable in that it is a named
memory space that stores a value. The parameter list is enclosed in parentheses and separated
by commas, or if there are no parameters then the parentheses will be empty. Formal parameters
are sometimes called arguments. Thus, pow is a 2-argument function. Our function pow returns
one value through the output argument name apower. If a function returns multiple values, we
put the output arguments in a comma-separated list enclosed by square brackets [].

After the function header comes the specification. This is a comment that communicates all
one needs to know about using the function. It has a post-condition part and a pre-condition
part identified with the abbreviations “Post” and “Pre”:

function apower = pow(a, n)
% Post: apower=aˆn
% Pre: n>=0

The post-condition describes the value that is produced by the function. To say that the post-
condition is “aˆn” is to say that the function returns the value an. In other words, the post-
condition describes the results or the effects of the function.

118 Chapter 4. Exponential Growth

Function file pow.m:

function apower = pow(a, n)

% Post: apower=aˆn
% Pre: n>=0

apower= 1;

for k= 1:n

apower= apower*a; % {apower=aˆk}
end

Script file eg4 2.m:

% Example4 2: {Examines |xˆn + yˆn - zˆn| for real x,y,z and whole number n.}

x= input(’Enter x: ’);

y= input(’Enter y: ’);

z= input(’Enter z: ’);

n= input(’Enter nonnegative integer n: ’);

value= abs(pow(x,n) +pow(y,n) - pow(z,n));

fprintf(’|xˆn + yˆn - zˆn| = %f\n’, value)

Output:

Enter x: 3
Enter y: 2
Enter z: 5
Enter nonnegative integer n: 3
|xˆn + yˆn - zˆn| = 90.000000

The pre-condition indicates properties that must be satisfied for the function to work correctly.
Apparently, pow does not work with negative n. Since there is no restriction on the value of a,
there is no mention of this parameter in the precondition.

The specification should not detail the method used to compute the returned value. The goal
simply is to provide enough information so that a user knows how to use the function. Matlab
uses the convention where the first comment line below the function header contains a succinct,
one-line description of the function. A complicated function requiring a lengthy description
should have a simplified one-line comment that summaries its purpose followed by the more
detailed post- and pre-conditions1.

Now let’s go “inside” the function and see how the required computation is carried out. To
produce an, function pow needs its own variables, apower and k, to carry out the looping and
repeated multiplication. In this regard, function pow is just like the main script eg4 2 which has
its own variables. To stress the distinction between the main script’s variables and those used
inside a function, we refer to the latter as local variables. Thus, apower and k, and indeed the

1Matlab’s lookfor and help commands work with user-defined as well as built-in functions. The command
lookfor 〈subject word〉 will display the names of all the functions in the search path that contains the subject
word in the first comment line in a function. The command help 〈function name〉 displays the lines of comments
that immediately follow the function header up to the first blank line.

4.1. Powers 119

parameters a and n, are local to pow.

Finally, we have reached the body of pow where the recipe for exponentiation is set forth:

apower= 1;
for k= 1:n

apower= apower*a; % {apower=aˆk}
end

The function body is the part of the function that follows the function header and the specification
comments. Notice how the powers are built up in apower until the required an is computed. Since
apower is specified to be the output argument in the function header, the value of apower after
execution of the function body is returned to the place in the script eg4 2 that invoked function
pow.

The last item on our agenda concerns the use of pow by the main program. Recall that a
built-in function such as sin returns a value that can be used in an arithmetic expression, e.g.,
v= sin(3*x) + 4*sin(2*x). The same is possible with pow:

d = pow(x, n)︸ ︷︷ ︸
xn

+ pow(y, n)︸ ︷︷ ︸
yn

+r pow(z, n)︸ ︷︷ ︸
zn

In any arithmetic expression that calls for a power, we merely insert an appropriate reference to
pow. These references are called function calls. The assignment to d includes three function calls
to pow. Suppose x, y, z, and n have value 2, 5, 4 and 3 respectively. It follows that

pow(x, n)
pow(y, n)
pow(z, n)



 has the value





23 = 8
53 = 125
43 = 64

and so d is assigned the value 8 + 125 + 64 = 197.

Every time a function is referenced, make sure that the number of arguments and their type
agree with what is specified in the function header. Choose function names that are descriptive
and unique. We choose the function name pow in order to distinguish it from a Matlab built-in
function called power2. You can access a function that you have defined if it is in the current
working directory or if the directory in which the function is stored is on the search path3. To
put a directory onto the search path, use Matlab’s menu option File → Set Path.

A function like pow is conveniently thought of as a factory. The “raw materials” are a and n
and the “finished product” is an. Thus, an “order” to produce (2.5)3 involves (a) the receipt of
the 2.5 and 3, (b) the production of the “consumer product” 2.53, and (c) the “shipment” of the
computed result 15.625. See Figure 4.1.

An important substitution mechanism attends each function call and it is essential that you
master the underlying dynamics. We motivate the discussion by considering how we use the
Centigrade-to-Fahrenheit formula

F =
9
5
C + 32.

2How do you know if a “word” is a Matlab function name? The command help 〈word〉 will list any documen-
tation associated with 〈word〉.

3Since there is only one current working directory at one time, you can create functions of the same name in
different directories. If you “must” create a function that has the same name as a built-in function, read Matlab’s
Help documentation under the topics function and search path for implementation details.

120 Chapter 4. Exponential Growth

If we substitute “20” for “C” and evaluate the result, then we conclude that F = 68. The formula
is merely a template with F and C having placeholder missions.

The situation is similar in a function. The function is merely a formula in algorithmic form
into which values are substituted. Let’s step through a call to pow and trace what happens.
Consider the following main program fragment:

x= 3;
m= 4;
p= pow(x,m);

When you run a Matlab program, the variables in the script are stored in the work space. Thus
after the first two assignment statements we have the following situation:

work space

p
m 4

x 3

Next comes the reference to pow. To trace what happens, we draw a “function box” for the
memory space used by the function. At the time of the function call, values are passed to
function pow so parameters (variables) are created in the function to hold the passed values:

work space

p
m 4

x 3

pow

n 4

a 3

Notice that the function box is separate from the work space used by the script—function pa-
rameters and variables are local to the function and are unknown to the script’s work space. Now
execution continues inside the function box. At the end of the first pass through the loop in pow
we reach the following state:

pow
-

-
-

n

a
an

Figure 4.1 Visualizing a Function

4.1. Powers 121

work space

p
m 4

x 3

pow

n 4

a 3

apower 3

k 1

Execution inside pow continues until at the end of the fourth and final pass we obtain:

work space

p
m 4

x 3

pow

n 4

a 3

apower 81
k 4

At this time, the function returns the value of the output argument, 81, to the place that has
called the function. Now the function box “closes” and control is passed back to the script with
the value 81 placed in p:

work space

p 81
m 4

x 3

Note that once the function box closes, its variables are lost. A subsequent call to function pow
will start without any memory of the previous function call4.

Problem 4.1. Note that x64 can be obtained through repeated squaring:

x → x2 → x4 → x8 → x16 → x32 → x64 .

Thus, x64 can be “reached” with only six multiplications in contrast to the sixty-three products that are required
if we go down the repeated multiplication path:

x → x2 → x3 · · · → x63 → x64 .

Using the repeated squaring idea, write a function twoPower(k,x) that computes xn where n = 2k . Write a good
specification.

4Special declarations may be used to change the properties of a variable. Matlab allows a variable’s value to
be preserved between function calls by using the variable declaration persistent. A variable may be shared by
multiple scripts and functions by using the variable declaration global.

122 Chapter 4. Exponential Growth

Problem 4.2. The Fibonacci numbers f1, f2 , . . . are defined as follows:

fn =

{
1 if n = 1
1 if n = 2
fn−1 + fn−2 if n ≥ 3

. (1)

It can be shown that

fn =
1
√

5

((
1 +

√
5

2

)n

−

(
1 −

√
5

2

)n)
. (2)

Write a program that prints a table showing the first 32 Fibonacci numbers computed in two ways. In the first
column of the table should be the values produced by the recursion (1) and in the second column the values
obtained by using (2). In the latter case, make effective use of power and print the real values to six decimal places
so that the effects of floating point arithmetic can be observed.

Problem 4.3. A general exponentiation function can be obtained by exploiting the formula

xy = (eln(x))y = eln(x)∗y ,

implemented in function powerGR below. Using powerGR, write a program that discovers the smallest positive

integer n so that (
√

n)
√

n+1 is larger than (
√

n + 1)
√

n.

function p = powerGR(x, y)

% Post: p= xˆy
% Pre: x>0

p= exp(ln(x)*y);

Problem 4.4. How big must n be before the following fragment prints inf?

x= 1;

for k= 1:n

x= powerGR(2,x);

end
disp(x)

Try to guess the answer before writing a program to confirm it.

It is possible for one programmer-defined function to call another programmer-defined func-
tion. To illustrate, Example4 3 prints a table of values for the function

f(x) = xn(1 − x)m

for the case n = 3 and m = 4. Function pow was shown in Example 4 2 and is excluded from the
Example 4 3 box.

A problem-solving strategy known as function generalization often leads to a situation where
one function calls another. Consider the an problem again where now n can be any integer.
Mathematically, there is no problem if a 6= 0 whenever n < 0. Suppose for some reason we find
the nonnegative n case “easy” and the negative n case “hard.” We proceed to develop pow as
above with the precondition n ≥ 0. We the realize through the formula

a−n =
1
an

4.1. Powers 123

Script file eg4 3.m:

% Example4 3: The function xˆn (1-x)ˆm

fprintf(’Let f(z) = zˆ(1-z)ˆ4 \n\n’);
fprintf(’ z f(z) \n’);
fprintf(’------------------\n’);
for z= 0:0.1:10

fz= product(z,3,4);

fprintf(’%.2f \t %f\n’, z, fz);

end

Function file product.m:

function p = product(z, n, m)

% Post: (zˆn)*(1-z)ˆm
% Pre: 0<=z<=1, m>=0, n>=0

if n <= m

p= pow(z*(1-z),n)*pow(1-z,m-n);

else
p= pow(z*(1-z),m)*pow(z,n-m);

end

Output:

Let f(z) = zˆ3 (1-z)ˆ4

z f(z)

0.000 0.00000000

0.100 0.00065610

0.200 0.00327680

0.300 0.00648270

...

124 Chapter 4. Exponential Growth

that a-to-a-negative-power is merely the reciprocal of a raised to the corresponding positive
power:

3−4 =
1
81

.

This suggests that we build our more general power function upon the restricted version already
developed:

function apower = powerG(a, n)
% Post: apower=aˆn
% Pre: a is nonzero if n is negative

if n>=0
apower= pow(a,n);

else
apower= 1/pow(a,-n);

end

Then any program that uses powerG also needs to access pow. Later, after the negative n case
is well enough understood, we may dispense with the reference to pow and handle the repeated
multiplication explicitly. For example, we can compute a|n| and then reciprocate the result based
upon a check of n’s sign:

function apower = powerG(a, n)
% Post: apower=aˆn
% Pre: a is nonzero if n is negative

apower= 1;
for k= 1:abs(n)

apower= apower*a; % {apower=aˆk}
end
if n<0

apower= 1/apower;
end

With this implementation, a program that references powerG does not need access to pow

Problem 4.5. Make the following three modifications to Example4 3. (a) Add a function

function dp = derProd(z, n, m)

% Post: Derivative of xˆn (1-x)ˆm at x=z

% Pre: m,n>0

(b) Modify the program so that it prints a table reporting the values f(z) and f ′(z) for z = 0.0,0.1, . . . , 0.9,1.0
where f(x) = x2(1− x)3.

4.2. Binomial Coefficients 125

4.2 Binomial Coefficients

Combinatorics is a branch of discrete mathematics that is concerned with the counting of com-
binations. The simplest combinatoric function is the factorial function n! = 1 · 2 · · · (n − 1) · n.
The number of ways that n people can stand in a line is given by n!. If n = 4 and a, b, c, and d
designate the four individuals, then here are the 24 = 1 · 2 · 3 · 4 possibilities:

abcd abdc acbd acdb adbc adcb
bacd badc bcad bcda bdac bdca
cabd cadb cbad cbda cdab cdba
dabc dacb dbac dbca dcab dcba

The factorial function grows very rapidly:

n n!
8 40320
9 362880
10 3628800
...

...
19 121645100408832000
20 2432902008176640000
21 51090942171709440000

If we write a function for computing n!, then we must consider what is the largest n that can
be used given Matlab’s use of double precision number. It turns out the n = 21 is the largest
acceptable input value and we obtain

function f = fact(n)
% Post: f=n!
% Pre: 0<=n<=12

f= 1;
for k= 1:n

f= f*k; %{f=k!}
end

Reasonable approximations of “large-n” factorials can be obtained via the Stirling formula:

n! ≈ Sn ≡
√

2πn
(n

e

)n

.

If we encapsulate this estimate in the form of a function and use our previously created function
pow, then we obtain

function s = stirling(n)
% Post: s=Stirling approximation to n!
% Pre: n>=0

if n==0

126 Chapter 4. Exponential Growth

s= 1;
else

s= sqrt(2*pi*n)*pow((n/exp(1)),n);
end

The case n = 0 is handled separately and is included to simplify the use of stirling.

The program Example4 4 compares the Stirling approximation with the exact value of the
factorial function for n = 0, 1, . . ., 21. For this range of n, the relative error in the Stirling
approximation Sn is about one percent.

Example4 4 makes use of three programmer-defined functions: fact, stirling, and pow
(through the call to stirling). This can be done as long as all the programmer-defined functions
are in the current working directory or in a directory that is on the search path.

Problem 4.6. If a positive integer x is written in base-10 notation, then the number of digits required is given
by 1 plus the trunc of log10 x. Using the identity

log10(n!) =

n∑

k=1

log10(k),

but without Matlab’s built-in functions, complete the following function:

function digits = factorialDigits(n)

% Post: The number of digits in n!

% Pre: n>=1

Write a program that uses factorialDigits and prints a 50-line table. On line n, the table should contain the
following values: n, the number of digits in n! as determined by FactorialDigits, the number of digits in the
Stirling approximation Sn, and Sn. Make use of the user-defined functions in this Chapter.

Problem 4.7. Complete the following function

function nni = f(n,d)

% Post: nni = The number of nonnegative integers <=n that end with the digit d

% Pre: n>=1, 0<=d<=9

Using function f, write a program that prints a 20-line table. On line k should appear k and the smallest n so
that n! is divisible by 10k . k = 1, 2, . . . , 20. Hint: Think about f(n, 0) + f(n, 5).

The number of ways that k objects can be selected from a a set of n objects is given by the
binomial coefficient (

n
k

)
≡ n!

k!(n − k)!
.

Thus, there are (
5
2

)
=

5!
2!3!

=
1 · 2 · 3 · 4 · 5

(1 · 2)(1 · 2 · 3)
=

5 · 4
1 · 2 = 10

4.2. Binomial Coefficients 127

% Example4 4: Stirling Approximation

fprintf(’ n\t n!\t Stirling Appx.\n’)
fprintf(’---\n’)
for n= 0:21

fprintf(’%2d\t%21.0f\t%21.0f\n’, n, fact(n), stirling(n))

end

Output:

n n! Stirling Appx.

0 1 1

1 1 1

2 2 2

3 6 6

4 24 24

5 120 118

6 720 710

7 5040 4980

8 40320 39902

9 362880 359537

10 3628800 3598696

11 39916800 39615625

12 479001600 475687486

13 6227020800 6187239475

14 87178291200 86661001741

15 1307674368000 1300430722199

16 20922789888000 20814114415223

17 355687428096000 353948328666100

18 6402373705728000 6372804626194297

19 121645100408832000 121112786592293600

20 2432902008176640000 2422786846761128960

21 51090942171709440000 50888617325509492736

128 Chapter 4. Exponential Growth

possible chess matches within a pool of 5 players. Similar cancelations permit us to compute
(

26
4

)
=

26!
4!22!

=
26 · 25 · 24 · 23

1 · 2 · 3 · 4
= 14950

which is the number of four-letter words with distinct letters and
(

52
5

)
=

52!
5!47!

=
52 · 51 · 50 · 49 · 48

1 · 2 · 3 · 4 · 5 = 2, 303, 000

which is the number of 5-card poker hands. From the definition we may write

function bc = binCoeff0(n,k)
% Post: Number of ways to select k objects from a set of n objects
% Pre: 0<=k<=n<=21
bc= fact(n)/fact(k)/fact(n-k); %{b = n choose j}

The trouble with this implementation is that n cannot exceed 21 because the function fact
breaks down for larger values. However, from the above examples we see that there is considerable
cancelation between the factorials in the numerator and denominator. Indeed, it can be shown
that

(
n
k

)
≡ n · (n − 1) · · · (n − k + 1)

1 · 2 · · ·k
.

Using this formula for the binomial coefficient we obtain

function bc = binCoeff(n,k)
% Post: bc = Number of ways to select k objects from a set of n objects
% Pre: 0<=k<=n<=53

bc= 1;
for j= 1:k

bc= bc * (n-j+1) / j;
end

The restriction that n be less than or equal to 53 has to do with the number of accurate
digits in a double precision number. The program Example4 6 prints out an array of binomial
coefficients.

Binomial coefficients arise in many situations. The term itself comes from the fact that if

(x + y)n = a0x
n + a1xn−1 + a2xn−2y

2 + · · ·+ an−1xyn−1 + anyn,

then

ak =
(

n
k

)
k = 0, . . . , n.

For example,

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

=
(

4
0

)
x4 +

(
4
1

)
x3y +

(
4
2

)
x2y2 +

(
4
3

)
xy3 +

(
4
4

)
y4

4.2. Binomial Coefficients 129

% Example4 6: The Pascal Triangle of binomial coefficients

nmax= 10; % highest n value

for n= 0:nmax

for k= 0:n

fprintf(’%5d ’, binCoeff(n,k))

end
fprintf(’\n’)

end

Output:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

Problem 4.8. For a given n, the binomial coefficient

(
n
k

)
attains its largest value when k = ceil(n/2). Write

a program that prints the value of binCoeff(n,ceil(n/2)) for n = 1 to 30. Explain why an incorrect value is
returned when n = 30.

Problem 4.9. Let Sn be the Stirling approximation to n! and define β(n, k) to be the approximation of ”n choose
k”:

β(n, k) =
Sn

SkSn−k

Assume that S0 = 1. Write a function stirlingBC(n) that returns β(n,k). Make effective use of stirling(n).
Write a program that uses stirlingBC to compute

en = max
0 ≤ k ≤ n

∣∣∣β(n,k) −
(

n
k

)∣∣∣
(

n
k

)

for n = 1 to 30. Make use of the user-defined functions in this Chapter.

Problem 4.10. Note that (
n
k

)
=

(
n

n − k

)
.

Modify BinCoeff so that it uses the expression on the right hand side if 2k > n. Rerun Example4 6 with the
modified function. Explain why the modified program is more efficient. Make use of the user-defined functions in
this Chapter.

130 Chapter 4. Exponential Growth

Problem 4.11. Imagine writing n letters and addressing (separately) the n envelopes. The number of ways that
all n letters can be placed in incorrect envelopes is given by the Bernoulli-Euler number

Bn =

n∑

k=0

(−1)k
(

n
k

)
(n − k)!

Thus,

B4 =

(
4
0

)
4! −

(
4
1

)
3! +

(
4
2

)
2!−

(
4
3

)
1!

(
4
4

)
0! = 24− 24 + 12− 4 + 1 = 9

Write a function

function be = bernEuler(n)

% Post: Number of ways to put n letters all in the wrong n envelopes.

% Pre: 1<=n<=21

and use it to print a table that shows B1, . . . , B12. Make use of the user-defined functions in this Chapter.

Problem 4.12. The number ways a set of n objects can be partitioned into m nonempty subsets is given by

σ
(m)
n =

m∑

j=1

(−1)m−jjn

(m − j)!j!
,

1 ≤ m ≤ n. For example,

σ
(2)
4 =

(−1)2−114

(2− 1)!1!
+

(−1)2−224

(2− 2)!2!
= −1 + 8 = 7.

Thus, there are 7 ways to partition a 4-element set like {a, b, c, d} into two non-empty subsets:

1 : {a},{b,c,d}
2 : {b},{a,c,d}
3 : {c}, {a,b,d}
4 : {d},{a,b,c}
5 : {a,b},{c,d}
6 : {a,c},{b,d}
7 : {a,d},{b,c}

Note that σ
(1)
n = σ

(n)
n = 1. Print a table with 10 lines. On line n should be printed the numbers σ

(1)
n , σ

(2)
n , . . . , σ

(n)
n .

Make use of the user-defined functions in this Chapter.

Problem 4.13. If j and k are nonnegative integers that satisfy j + k ≤ n, then the coefficient of xkyjzn−j−k in
(x + y + z)n is given by the trinomial coefficient

T (n, j, k) =

(
n
j

)(
n − j

k

)

Write a function triCoeff(n,j,k) that computes T (n, j, k) and use it to print a list of all trinomial coefficients
of the form T (10, j, k) where 0 ≤ j ≤ k and j + k ≤ 10. Make use of binCoeff and other user-defined functions in
this Chapter.

Problem 4.14. Modify the fragment

for a= 1:4

for b= 1:4

4.2. Binomial Coefficients 131

for c= 1:4

for d= 1:4

fprintf(’%1d%1d%1d%1d\n’, a, b, c, d)

end
end

end
end

so that it prints a list of all possible permutations of the digits 1,2,3, and 4, i.e.,

1234 1243 1324 1342 1423 1432
2134 2143 2314 2341 2413 2431
3124 3142 3214 3241 3412 3421
4123 4132 4213 4231 4312 4321

(The order of the 24 numbers in the list is not important.)

