
CS100M Section Exercise 3

1. Write a Matlab script to print the first n Fibonacci numbers. Remember that the Fibonacci
numbers are defined as Fn = Fn−1 + Fn−2 with F1 = 1 and F2 = 1. Notice that to calculate any Fn,
you know need to know the two previous Fibonacci numbers—you do not need to keep track of the
entire sequence at any time. Use scalar variables only. A scalar is a variable that stores a single value
at one time. Your script will begin with the following statements:

n= input(’Input n: ’);
value1= 1;
value2= 1;

2. Write a Matlab script to print the numbers Fn, Fn + 1, Fn + 2, . . . , Fn+1 − 1, Fn+1. For example,
if n = 6, then your script prints 8, 9, 10, 11, 12, 13 since F6 = 8 and F7 = 13. Your script begins with
the following statements:

n= input(’Input n: ’);
value1= 1;
value2= 1;

3. Write a Matlab script to print all the numbers between 1 and n, exclusive, that divide n (without
a remainder using integer division). n is a user input value. (Hint: you already know how to check
whether or not a number divides another number. Think back to the first lab.)

4. Refer to Question 3. Use a while-loop instead of a for-loop.

Optional Challenge Question: Refer to Question 3 and write a Matlab script to print the prime
numbers that divide n.

1



Review (Read this at home, not for section)

This is a reminder about certain nice properties of if-statements and how to cut down on superfluous
code. You worked on this in section last week. Suppose you have a nonnegative ray angle A in degrees.
The following code determines in which quadrant A lies:

A = input(’Input ray angle: ’);
A = mod(A, 360); %Given nonnegative A, result will be in the interval [0,360)

if (A < 90)
quadrant= 1;

elseif (A < 180)
quadrant= 2;

elseif (A < 270)
quadrant= 3;

else
quadrant= 4;

end

fprintf(’Ray angle %f lies in quadrant %d\n’, A, quadrant);

Notice that in the second condition, it is not necessary to check for A>=90 in addition to A<180 because
the second condition, in the elseif branch, is executed only if the first condition evaluates to false.
That means that by the time the computer gets to the second condition, it already knows that A is
≥ 90 so writing A>=90 && A<180 as the second condition would be redundant. Similarly, the concise
way to write the third condition is to write only A<270 as above—unnecessary to write the compound
condition A>=180 && A<270. This is the nice (efficient) feature of “cascading” and “nesting.” If I do
not cascade or nest, but instead use independent if-statements, then I must use compound conditions
in some cases, as shown in the fragment below:

A= mod(A, 360); %Given nonnegative A, result will be in the interval [0,360)
if (A < 90)
quadrant= 1;

end
if (A >=90 && A < 180)
quadrant= 2;

end
if (A >=180 && A < 270)
quadrant= 3;

end
if (A >=270)
quadrant= 4;

end

2


