CS100M Lab 4

1. Complete the following code in a script so that all the numbers between F_{n} and F_{n+1} are printed. As a reminder, $F_{1}=1, F_{2}=1$, and $F_{k}=F_{k-1}+F_{k-2}$ for $k>2$. For example, if $\mathrm{n}=6$, then the numbers between $F_{6}(=8)$ and $F_{7}(=13)$ are $9,10,11$ and 12. Do not use the for loop, use the while loop instead.
```
N = input('Input N: ');
tempValue1 = 1;
tempValue2 = 1;
% Add the necessary code here
```

2. Write a script that, given a number n, prints out all the prime numbers from 2 to n inclusive. As a reminder, a number m is prime if and only if it is not 1 , and the only divisors of m are 1 and itself. Your script should ask the user to key in the value of n and display all the appropriate prime numbers.
3. Write a Matlab function $\operatorname{aprime}(\mathbf{m})$ that has an input parameter \mathbf{m}. Function aprime(m) returns 1 if \mathbf{m} is prime, and 0 otherwise. Remember to write a concise comment to describe the function, including its parameters under the function header.
4. A twin prime is a pair of primes such that if p is a prime, $p+2$ is also a prime. The larger prime in the pair is called the big prime, while the smaller prime is called the little prime. For example, in the twin prime pair $(3,5), 5$ is the big prime while 3 is the little prime. Write a function lastTwinPair(n) that will, given a number \mathbf{n} greater than or equal to 3 , return the last (largest) twin prime pair smaller than or equal to \mathbf{n}. Use function aprime from the previous question! This function has two output arguments: littlep and bigp.

Please delete your files from the computer before you leave!

