CS100M Spring 2006: Project 3 Grading Guide

The coded items below (e.g., c1e, s2a) indicate what a student’s solution should accomplish. Codes that

begin with the letter “c” deal with correctness; codes that begin with “s” deal with style.

Grader: If a student’s solution does not accomplish task c1a, for example, then write the task code “c1a”
along with any diagnostic remarks you can give. Count the number of correctness and style errors separately.

Items marked with ** count as two errors. In the table below, the top row lists the possible scores (1 to 5).

The next row lists the number of correctness errors corresponding to every score category. The style score

is determined similarly. Enter the total score (maximum of 10) in CMS as the project score. If there are

bonus questions, enter any bonus points separately in the “Bonus Bucket,” separate from the project score.

Student: Read the grading guide for every project, even if you get a perfect score! Notice from the table

below that we often give one or two “freebies,” i.e., mistakes that don’t cost you any points. Learn from

working on the project, and learn from any mistakes.

Scores
· c and s stand for correctness and style; see table below.

· parts with ** next to them means that they are double the value, *** for triple, etc.

· Apply bonus for exemplary work or doing additional tasks.

	Score
	0
	1
	2
	3
	4
	5

	# correctness errors
	>10
	8-9
	6-7
	4-5
	2-3
	0-1

	# style errors
	>11
	9-10
	7-8
	5-6
	2-4
	0-1

General
(s0a) Use meaningful variable names

(s0b) Appropriate indentation

(s0c**) Appropriate comment header in each script/function file

(s0d) Appropriate and concise comments throughout

(s0e) Reasonable line lengths; no horizontal scrolling

(s0f) [up to **] No superfluous code

(s0h) No debugging output.

(s0i) loops are used where vectorized code could be used instead

(c0a) [2* max] Program compiles without error. (1 * for each compiler error message up to 2)

(c0b) [2* max] Program successfully executes without crashing. (* for occasional, ** for persistent)

Censoring: censor.m

NOTE TO GRADER: check multiple scenarios including what happens when the censorWord appears in the beginning or the end of inString and if it appears multiple times. You can use the following input:

inString= AbcdeaBcdeabcbcABCDE

censorWord=abc

Output= XxxdexXxdexxxbcXXXDE

(c1a) correct function header (inputs, output)

(c1b) correctly checks that censorWord is all lower case

(c1c**) correctly finds all the occurrences of censorWord in inString ignoring case

(c1d**) correctly formats the censored word (replacing lower case with x and upper case with X

(c1e**) no missing or extra characters in the output string

(c1f) the function should return a censored string or use the “error” command, and not print anything

(c1g**) the function doesn’t use regular expression or string manipulation functions, except for upper, lower, isletter, and isspace
(s1a) efficiently looping through inString only once

Use the general style codes

Interactive graphing: goWorm.m

(c2a) draws 20 segments of the worm correctly

(c2b**) updates the position of all the segments of the worm correctly (the worm should not get longer or shorter after a few iterations, and it should not get “disconnected”)

(c2c) adjusts the worm’s speed correctly (i.e., uses the pause command with the function parameter)

(c2d) halts when the worm’s head reaches the boundaries

(c2e) responds to the clicks correctly (updating the direction of the head according to the last click)

(c2f) uses the global variable “click” correctly (get the information on the new coordinates and reset it to be an empty array.

(c2g) the function uses the axis command to retain the original grid (otherwise Matlab will try to update the grid efficiently, to include only what is needed to show the worm)

(c2h) the function doesn’t use an input parameter

(c2i) the function calls makeclickable more then once.

(s2a) the function uses helper functions to perform sub-tasks (mainly to redraw the worm)

(s2b) plotting the worm should be done in one call to the plot function

(s2c) the grid size, and the worm’s length can be easily modified (i.e. they should be stored in a variable which has a meaningful name, and the purpose of those variables should be documented

(s2d) the initial position of the worm should be reasonable

