CS100M Spring 2006: Project 1 Grading Guide

The coded items below (e.g., c1e, s2a) indicate what a student’s solution should accomplish. Codes that

begin with the letter ’c’ deal with correctness; codes that begin with ’s’ deal with style.

Grader: If a student’s solution does not accomplish task c1a, for example, then write the task code ’c1a’

along with any diagnostic remarks you can give. Count the number of correctness and style errors separately.

Items marked with ** count as two errors. In the table below, the top row lists the possible scores (1 to 5).

The next row lists the number of correctness errors corresponding to every score category. The style score

is determined similarly. Enter the total score (maximum of 10) in CMS as the project score. If there are

bonus questions, enter any bonus points separately in the ”Bonus Bucket,” separate from the project score.

Student: Read the grading guide for every project, even if you get a perfect score! Notice from the table

below that we often give one or two ”freebies,” i.e., mistakes that don’t cost you any points. Learn from

working on the project, and learn from any mistakes.

Scores
· c and s stand for correctness and style; see table below.

· parts with ** next to them means that they are double the value, *** for triple, etc.

· Apply bonus for exemplary work or doing additional tasks.

	Score
	0
	1
	2
	3
	4
	5

	# correctness errors
	> 9
	7-9
	5,6
	4
	2,3
	0,1

	# style errors
	> 10
	8-10
	5-7
	3,4
	2
	0,1

General
(s0a) Use meaningful variable names

(s0b) Appropriate indentation

(s0c) Appropriate comment header in each script/function file

(s0d) Appropriate and concise comments throughout

(s0e) Reasonable line lengths; no horizontal scrolling

(s0f) [up to **] No superfluous code

 (s0h) No debugging output.

(c0a) [2* max] Program compiles without error. (1 * for each compiler error message up to 2)

(c0b) [2* max] Program successfully executes without crashing. (* for occasional, ** for persistent)

ASCII, course information and policies

(c1a) Questions 1-3 answered correctly

(c1b) Questions 4-6 answered correctly

(c1c) Questions 7, 8 answered correctly

(s1a) reasonable formatting

Areas for geometric shapes: P1Area.m

NOTE TO GRADER: No need to check for impossible triangle side lengths

(c2a) asks for input of choice

(c2b) correctly asks for radius of circle

(c2c) correctly asks for height/width of rectangle

(c2d) correctly asks for sides of triangle

(c2e) correctly calculates area of circle

(c2f) correctly calculates area of rectangle

(c2g) correctly calculates area of triangle

(c2h) catches error if user enters any number other than 1,2,3

(s1a) printed output inserts newline at the end

(s2a) logic for the three cases reasonably discernable (ie, code is organized so you can follow the logic)

Plotting a random rectangle: rectangle.m

(c3a) calculates random number correctly

(c3b) draws corners correctly (either 2 opposing corners or all four corners is fine)

(s3a) only modifies designated section of code

(s3b) code for random numbers should be identical for each point

