CS100M Lecture 28 May 4, 2006

When might | use public fields?

= Previous Lecture: = Client needs easy access to fields

= Two-dimensional array of numbers " s . .
» Manipulating 2-d arrays = The only "service" that the class provides is
to collect related data under one (class)

= Today’s Lecture: name
= 2-d array of objects—a String is an object = One should still consider using private
= Review arrays of objects (1- and 2-d) fields though'

= Reading:

= Review String methods on pp 37-44. (No need to memorize
the methods! Just be aware of the kinds of String methods
available for future reference.)

May 4, 2006 Lecuure 28 2 May 4, 2006 Lecture 28 4

Example: cubicle world Instantiating 2-d arrays
Implement a class CubicleWorld that has a 2-d = A 2-d array is a 1-d array of 1-d arrays
array of Cubicles, so a CubicleWorld is like a

= You can create one dimension at a time:
1 Declare a reference variable for the 2-d array

2. Set 1st dimension (# rows)—create a 1-d array
to hold the row references

s Set 2" dimension (# columns) one row at a

floor plan.

The array has dimensions just big enough to store the
entire floor plan including internal spaces.

A Cubicle object has fields name, row, column.

row . A
1 [__Alice |[Dilbert][Dogbert | time—create the individual arrays that store the
2 values (or object references) of interest
3 [Asok]| Ca;(" |[Catbert][P-HBoss | . Now can assign values (or references) into the
1 3 4
. — cells of the array
What we learned... Final Exam

= Develop/implement algorithms for problems
. . s Thurs, May 11, 2-4:30pm, Barton E.
= Develop programming skills
= Design, implement, document, test, and debug = 2/3 Java, 1/3 MATLAB
= Apply programming languages = Closed-book exam, no calculators
= Control structures = Bring student ID card
= Function/methods for reducing redundancy
= Data structure

« Fundamentals of object oriented programming, including = Check for announcements on webpage:

inheritance = Study break office/consulting hours
= Specific tasks = Review session time and location
= Simulating systems = Review questions
= Sorting = List of potentially useful functions/methods
= Searching

= Plotting numeric data
iy 4, 2906

Lecture 28 10 May 4, 2006 Lecture 28 1

CS100M Lecture 28 Handout May 4, 2006

/* A Cubicle in some office. Row and column numbers start at 1 */
// The only "service" that this class provides is to collect related
// data in a Cubicle object. (Notice that there"re no methods other
// than the most basic ones: constructor and toString.) In such a case,
// one may choose to make the fields public.
class Cubicle {
public String name; //name of person who uses the Cubicle
public iInt row; //row number of the Cubicle
public int column; //column number of the Cubicle

/* Constructor: Person n uses this Cubicle which is in row r, column c */
public Cubicle(String n, Iint r, int c) {

name= n;

row= rj;

column= c;

}

/* = a String containing the data values of this Cubicle */
public String toString() {
return name + ""s cubicle is at row

+ row + ", column

+ column ;

}
} //class Cubicle

/* A CubicleWorld is a a 2-d array of Cubicles */
public class CubicleWorld {
private Cubicle[][] floorPlan; //Refers to 2-d array of Cubicles
private int rows; //Number of rows in floor plan
private int[] columns; //columns[i] is # of columns in row 1 of floor plan

/* Constructor: set the values of the fields */
public CubicleWorld(int rows, int[] cols) {

//Set 1st dimension of floor plan (number of rows)

//Set 2nd dimension of floor plan one row at a time

}

/* Fill this CubicleWorld®s floor plan */
public void FillFloorPlan(Cubicle[] cubes) {

}

* =Get Cubicle at row r, column c. Row, column numbers start at 1 */
public Cubicle getCubicle(int r, int c¢) {

}

//class CubicleWorld continues on next page

CS100M Lecture 28 Handout May 4, 2006

//class CubicleWorld, continued

/* ={Person with name s is found in this CubicleWorld}, true or false.
* Display the Cubicle location(s) of person(s) with name s */
public boolean findPerson(String s) {

public static void main(String[] args) {

int rows= 3; //Number of rows of Cubicles
int[] columns= {3, 3, 4}; //Number of columns of Cubicles

//Cubicle data collected as a 1-d array

//(Remember that Cubicle row and column numbers start at 1)

Cubicle[] workers= new Cubicle[] { new Cubicle("Alice", 1, 1),
new Cubicle(''Dilbert”, 1, 2),
new Cubicle(''Dogbert"™, 1, 3),
new Cubicle("'Ratbert”, 2, 1),
new Cubicle('Wally'™, 2, 3),
new Cubicle("Asok™, 3, 1),
new Cubicle('Carol', 3, 2),
new Cubicle('Catbert”, 3, 3),
new Cubicle("'P-H Boss", 3, 4)

3

//Create a CubicleWorld that is just big enough for all the workers
CubicleWorld cw= new CubicleWorld(rows, columns);

//Now put the workers (Cubicles) into the floorPlan
cw.fillFloorPlan(workers);

//Let"s test a few cases:
System.out.printin(cw.getCubicle(l,3));
System.out.printlin(cw.getCubicle(2,2));
System.out.println(cw.getCubicle(3,4));

boolean foundPerson;
foundPerson= cw.FfindPerson("'Ratbert');
foundPerson= cw.FfindPerson("'Garfield™);

3
} //class CubicleWorld

