
CS100M Lecture 26 Apr 27, 2006

1

April 27, 2006 Lecture 26 2

Previous Lecture:
Overriding methods
Using super to access members from the superclass

Today’s Lecture:
Polymorphism
Object class
Abstract

Reading:
Sec 8.1, 8.2

April 27, 2006 Lecture 26 4

Another polymorphic example
Vehicle[] mover = new Vehicle[5];

mover[0]= new Vehicle(...);
mover[1]= new Plane(...);
mover[2]= new Plane(...);
mover[3]= mover[1];

The reference type may not be the same as
the object type!

April 27, 2006 Lecture 26 5

Accessing methods/variables through a
polymorphic reference

Dice d= new TrickDice(…);

Consider the reference type and object type:
1. Which type determines whether a

method/variable can be accessed?

2. For an overridden method, which type
determines which version gets invoked?

April 27, 2006 Lecture 26 8

Accessing methods/variables
through polymorphic references
The type of the reference determines the
methods and fields that can be accessed

class V {
public int num1;
public void vmethod() { num1++; }

}
class W extends V {
public int num2;
public void wmethod() { num2++; }

}

April 27, 2006 Lecture 26 12

Client code:

V x= new W();
System.out.println(x.num1); //valid?
System.out.println(x.num2); //valid?
x.vmethod(); //valid?
x.wmethod(); //valid?

System.out.println(((W) x).num2);
((W) x).wmethod();

April 27, 2006 Lecture 26 13

Client code:

V x; // x references type V or its subtype
String s= “Which type, V or W? ”;
System.out.print(s);
char input= Keyboard.readChar();
if (input==‘V’)

x= new V();
else

x= new W();

System.out.println(x.num1); //?
System.out.println(x.num2); //?
x.vmethod(); //?
x.wmethod(); //?

CS100M Lecture 26 Apr 27, 2006

2

April 27, 2006 Lecture 26 15

Accessing overridden methods
through polymorphic references

The type of the object determines which version
of the method gets invoked
Class Vehicle has method toString that class
Plane overrides:

Vehicle v1= new Vehicle(...);
Vehicle v2= new Plane(...);
System.out.println(v1); //Vehicle’s version
System.out.println(v2); //Plane’s version

April 27, 2006 Lecture 26 16

instanceof
instanceof is an operator for determining
when an instance is of (from) a particular
class
See example in class House

April 27, 2006 Lecture 26 17

The Object class

If a class is not explicitly defined to be the child of an
existing class, it is assumed to be the child of the
Object class

⇒ All classes are derived from the Object class

class Room
is the same as

class Room extends Object

April 27, 2006 Lecture 26 19

The Object class

If a class is not explicitly defined to be the child of
an existing class, it is assumed to be the child of
the Object class
⇒ All classes are derived from the Object class

Room

Bathroom

House

Object

April 27, 2006 Lecture 26 20

The Object class

If a class is not explicitly defined to be the child of
an existing class, it is assumed to be the child of
the Object class
⇒ All classes are derived from the Object class

toString: “default” instance method defined in
the Object class
Arrays are Objects, literally!

April 27, 2006 Lecture 26 21

abstract class
A placeholder in a class hierarchy that
represents a generic concept
Cannot be instantiated
Modifier: abstract

public abstract class Geometry
Can contain abstract methods

public abstract double Area();
Subclasses of abstract classes will “fill out”
these abstract methods

	Announcements
	
	Suppose class Plane extends Vehicle
	Another polymorphic example
	Accessing methods/variables through a polymorphic referenceDice d= new TrickDice(…);
	Accessing methods/variables through a polymorphic referenceDice d= new TrickDice(…);
	Accessing methods/variables through a polymorphic referenceDice d= new TrickDice(…);
	Accessing methods/variables through polymorphic references
	// Client code:V x= new W(); x.vmethod(); //Line 1x.wmethod(); //Line 2
	// Client code:V x= new W(); System.out.println(x.num1);//Line1System.out.println(x.num2);//Line2
	Accessing methods/variables through a polymorphic referenceDice d= new TrickDice(…);
	Accessing overridden methods through polymorphic references
	instanceof
	The Object class
	The Object class
	The Object class
	The Object class
	abstract class

