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Previous Lecture:
Overriding methods
Using super to access members from the superclass

Today’s Lecture:
Polymorphism
Object class
Abstract

Reading:
Sec 8.1, 8.2
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Another polymorphic example 
Vehicle[] mover = new Vehicle[5];

mover[0]= new Vehicle(...);
mover[1]= new Plane(...);
mover[2]= new Plane(...);
mover[3]= mover[1];

The reference type may not be the same as 
the object type!
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Accessing methods/variables through a 
polymorphic reference

Dice d= new TrickDice(…);

Consider the reference type and object type:
1. Which type determines whether a 

method/variable can be accessed?

2. For an overridden method, which type 
determines which version gets invoked?
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Accessing methods/variables 
through polymorphic references
The type of the reference determines the 
methods and fields that can be accessed

class V {
public int num1;
public void vmethod() { num1++; }

}
class W extends V {
public int num2;
public void wmethod() { num2++; }

}
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Client code:

V x= new W();  
System.out.println(x.num1);  //valid?
System.out.println(x.num2);  //valid?
x.vmethod();  //valid?
x.wmethod();  //valid?

System.out.println( ((W) x).num2 );
((W) x).wmethod();
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Client code:

V x;  // x references type V or its subtype
String s= “Which type, V or W? ”;
System.out.print(s);
char input= Keyboard.readChar();
if (input==‘V’)

x= new V();
else

x= new W();

System.out.println(x.num1);  //?
System.out.println(x.num2);  //?
x.vmethod();  //?
x.wmethod();  //?
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Accessing overridden methods 
through polymorphic references

The type of the object determines which version 
of the method gets invoked
Class Vehicle has method toString that class 
Plane overrides:

Vehicle v1= new Vehicle(...);
Vehicle v2= new Plane(...);
System.out.println(v1); //Vehicle’s version
System.out.println(v2); //Plane’s version
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instanceof
instanceof is an operator for determining 
when an instance is of (from) a particular 
class
See example in class House

April 27, 2006 Lecture 26 17

The Object class

If a class is not explicitly defined to be the child of an 
existing class, it is assumed to be the child of the 
Object class

⇒ All classes are derived from the Object class

class Room
is the same as

class Room extends Object
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The Object class

If a class is not explicitly defined to be the child of 
an existing class, it is assumed to be the child of 
the Object class
⇒ All classes are derived from the Object class

Room

Bathroom

House

Object
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The Object class

If a class is not explicitly defined to be the child of 
an existing class, it is assumed to be the child of 
the Object class
⇒ All classes are derived from the Object class

toString:  “default” instance method defined in 
the Object class
Arrays are Objects, literally!
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abstract class
A placeholder in a class hierarchy that 
represents a generic concept
Cannot be instantiated
Modifier:  abstract

public abstract class Geometry
Can contain abstract methods

public abstract double Area();
Subclasses of abstract classes will “fill out” 
these abstract methods


	Announcements
	
	Suppose class Plane extends Vehicle
	Another polymorphic example
	Accessing methods/variables through a polymorphic referenceDice d= new TrickDice(…);
	Accessing methods/variables through a polymorphic referenceDice d= new TrickDice(…);
	Accessing methods/variables through a polymorphic referenceDice d= new TrickDice(…);
	Accessing methods/variables through polymorphic references
	// Client code:V x= new W();  x.vmethod(); //Line 1x.wmethod(); //Line 2
	// Client code:V x= new W();  System.out.println(x.num1);//Line1System.out.println(x.num2);//Line2
	Accessing methods/variables through a polymorphic referenceDice d= new TrickDice(…);
	Accessing overridden methods through polymorphic references
	instanceof
	The Object class
	The Object class
	The Object class
	The Object class
	abstract class

