CS100M Lecture 26 Apr 27, 2006

= Previous Lecture:
= Overriding methods
= Using super to access members from the superclass

= Today’s Lecture:
= Polymorphism
= Object class
= Abstract

= Reading:
= Sec 8.1, 8.2

April 27, 2006 Lecture 26

Another polymorphic example

Vehicle[] mover = new Vehiclel[5];

mover[0]= new Vehicle(...);
mover[l]= new Plane(...);
mover[2]= new Plane(...);

mover[3]= mover[l];

The reference type may not be the same as
the object type!

April 27, 2006 Lecture 26 4

Accessing methods/variables through a
polymorphic reference
Dice d= new TrickDice(...);

Consider the reference type and object type:

1. Which type determines whether a
method/variable can be accessed?

2. For an overridden method, which type
determines which version gets invoked?

April 27, 2006 Lecture 26 5

AcCCessing methods/variables
through polymorphic references

The type of the reference determines the
methods and fields that can be accessed

class V {

public int numl;

public void vmethod() { numl++; }
}
class W extends V {

public int num2;

public void wmethod() { num2++; }
}

April 27, 2006 Lecture 26 8

Client code:

V x= new W();
System.out.println(x.numl); //valid?
System.out.println(x.num2); //valid?
x.vmethod(); //valid?

x.wmethod(); //valid?

System.out.println(((W) x).num2);
((W) x).wmethod() ;

April 27, 2006 Lecture 26 12

Client code:

V x; // x references type V or its subtype
String s= “Which type, V or W? ”
System.out.print(s);
char input= Keyboard.readChar () ;
if (input=='V’)

x= new V()
else

x= new W();

System.out.println(x.numl); //?
System.out.println(x.num2); //?
x.vmethod(); //?
x.wmethod () ; //?

April 27, 2006 Lecture 26 13

CS100M Lecture 26 Apr 27, 2006

Accessing overridden methods
through polymorphic references

= The type of the object determines which version
of the method gets invoked

= Class vehicle has method tostring that class
Plane overrides:

Vehicle vl= new Vehicle(...);

Vehicle v2= new Plane(...);
System.out.println(vl); //Vehicle’s version
System.out.println(v2); //Plane’s version

April 27, 2006 Lecture 26 15

instanceof

= instanceof is an operator for determining
when an instance is of (from) a particular
class

= See example in class House

April 27, 2006 Lecture 26 16

The Object class

If a class is not explicitly defined to be the child of an
existing class, it is assumed to be the child of the
Object class

= All classes are derived from the Object class
class Room

/s the same as
class Room extends Object

April 27, 2006 Lecture 26 17

The Object class

= If a class is not explicitly defined to be the child of
an existing class, it is assumed to be the child of
the Object class

= All classes are derived from the Object class

Object

AN

Room { House }

April 27, 2006 Lecture 26 19

—J

The Object class

= If a class is not explicitly defined to be the child of
an existing class, it is assumed to be the child of
the Object class

= All classes are derived from the Object class

= toString: “default” instance method defined in
the Object class

= Arrays are Objects, literally!

April 27, 2006 Lecture 26 2

abstract class

= A placeholder in a class hierarchy that
represents a generic concept

= Cannot be instantiated
= Modifier: abstract

public abstract class Geometry
= Can contain abstract methods

public abstract double Area();

= Subclasses of abstract classes will “fill out”
these abstract methods

April 27, 2006 Lecture 26 2

	Announcements
	
	Suppose class Plane extends Vehicle
	Another polymorphic example
	Accessing methods/variables through a polymorphic referenceDice d= new TrickDice(…);
	Accessing methods/variables through a polymorphic referenceDice d= new TrickDice(…);
	Accessing methods/variables through a polymorphic referenceDice d= new TrickDice(…);
	Accessing methods/variables through polymorphic references
	// Client code:V x= new W(); x.vmethod(); //Line 1x.wmethod(); //Line 2
	// Client code:V x= new W(); System.out.println(x.num1);//Line1System.out.println(x.num2);//Line2
	Accessing methods/variables through a polymorphic referenceDice d= new TrickDice(…);
	Accessing overridden methods through polymorphic references
	instanceof
	The Object class
	The Object class
	The Object class
	The Object class
	abstract class

