
CS100M Lecture 25 Apr. 25, 2006

1

April 25, 2006 Lecture 25 2

Previous Lecture:
Inheritance—extending a class
Constructor in the subclass

Today’s Lecture:
Overriding methods
Using super to access members from the superclass
What is “polymorphism”?

Reading:
Sec 7.2. Optional: Sec 7.3

April 25, 2006 Lecture 25 3

class Dice {

private int top;
private int sides;

public Dice(…) {…}
public void roll() {…}
public String toString(){…}
public int getTop() {…}
public int getSides() {…}
}

class TrickDice extends Dice
{
private int weightedSide;
private int weight;

public TrickDice(…) {…}
public void roll() {…}
public String toString(){…}
public int getWSide() {…}
public int getWeight() {…}
}

Make TrickDice a subclass of Dice.

April 25, 2006 Lecture 25 5

class TrickDice extends Dice {

private int weightedSide; //Weighted side appears more often
private int weight; //Weighted side appears weight

// times as often as other sides

/** TrickDice has side s appearing with weight w */
public TrickDice(int numFaces, int s, int w) {

super(numFaces);
weightedSide= s;
weight= w;

}

//other methods…
}

April 25, 2006 Lecture 25 6

Reserved word super
Invoke constructor of superclass

super(parameter-list);

parameter-list must match that in
superclass’ constructor

April 25, 2006 Lecture 25 7

Calling one constructor from another
In a subclass’ constructor, call the superclass’
constructor with the keyword super instead
of the superclass’ (constructor’s) name

Always make a call to the superclass’
constructor as the 1st statement in a
constructor in a subclass!

April 25, 2006 Lecture 25 8

Calling one constructor from another
In a subclass’ constructor, call the superclass’
constructor with the keyword super instead
of the superclass’ (constructor’s) name
To call another constructor from a
constructor in the same class, use the
keyword this
Always make a call to a constructor (super or
this) as the 1st statement in a constructor in
a subclass!

CS100M Lecture 25 Apr. 25, 2006

2

April 25, 2006 Lecture 25 10

/* A 2nd TrickDice constructor: 6-sided
TrickDice has side s appearing with weight w,
s<=6 */
public TrickDice(int s, int w) {

//what goes in here?
}

a. TrickDice(6, s, w);
b. this(6, s, w);
c. Dice(6, s, w);
d. super(6, s, w);
e. 2 of the above

April 25, 2006 Lecture 25 11

Which components get inherited?
public components get inherited
private components exist in object of child
class, but cannot be directly accessed in child
class ⇒ we say they are not inherited
Note the difference between inheritance and
existence!

April 25, 2006 Lecture 25 12

protected visibility (see Sec 7.2 for detail)

Visibility modifiers control which members get inherited

private
Not inherited, can be accessed by local class only

public
Inherited, can be accessed by all classes

protected
Inherited, can be accessed by subclasses

Access : access as though declared locally
All variables from a superclass exist in the subclass, but
the private ones cannot be accessed directly

April 25, 2006 Lecture 25 15

class Dice {

public Dice(…) {
…
roll();

}

public void roll() {…}

//…other methods, fields
}

class TrickDice extends Dice{

public TrickDice(…) {
super(…);
…

}

public void roll() {…}

//…other methods, fields
}

Overridden methods: which version gets invoked?
To create TrickDice: call the TrickDice constructor, which
calls the Dice constructor, which calls the roll method.
Which roll method gets invoked?

April 25, 2006 Lecture 25 16

Overriding methods
Subclass can override definition of inherited method
New method in subclass must have same signature
as superclass (but has different method body)
Which method gets used??
The object that is used to invoke a method
determines which version is used
Method declared to be final cannot be overridden
Do not confuse overriding with overloading!

April 25, 2006 Lecture 25 18

Accessing members in superclass
super

From constructor in subclass, call superclass’
constructor
Access superclass’ version of a overridden
method. E.g.:

super.toString()

CS100M Lecture 25 Apr. 25, 2006

3

April 25, 2006 Lecture 25 19

static methods & variables
Do not re-declare static components!

Same rules for inheritance (accessibility) with
respect to visibility modifiers

Static method: implicitly final

Static variable: same memory space as superclass

April 25, 2006 Lecture 25 20

Important ideas in inheritance
Single inheritance
Keep common features as high in the hierarchy
as reasonably possible
Use the superclass’ features as much as possible
“Inherited” ⇒ “can be accessed as though
declared locally”
(private variables in superclass exists in subclasses;
they just cannot be accessed directly)

Inherited features are continually passed down
the line
Use different hierarchies for different problems

April 25, 2006 Lecture 25 21

Polymorphism

“Have many forms”

A polymorphic reference refers to
different objects (related through
inheritance) at different times

April 25, 2006 Lecture 25 24

Suppose class Plane extends Vehicle

Vehicle mover; //a Vehicle reference
Plane flyer; //a Plane reference
mover= new Vehicle(...);
flyer= new Plane(...);
// A plane is a vehicle

mover= new Plane(...);
mover= flyer;

// A vehicle is not a plane
flyer= new Vehicle(...); //invalid

April 25, 2006 Lecture 25 25

Another polymorphic example
Vehicle[] mover = new Vehicle[5];

mover[0]= new Vehicle(...);
mover[1]= new Plane(...);
mover[2]= new Plane(...);
mover[3]= mover[1];

The reference type may not be the same as
the object type!

/** A Dice (or Die) */
class Dice {

 private int top; // top face
 private int sides; // number of sides

 /** A Dice has numSides sides and the top face is random */
 public Dice(int numSides) {
 sides= numSides;
 roll();
 }

 /** top gets a random value in 1..sides */
 public void roll() {
 setTop(randInt(1,getSides())) ;
 }

 /** = random int in low..high */
 public static int randInt(int low, int high) {
 return (int) (Math.random()*(high-low+1))+low;
 }

 /** = Get top face */
 public int getTop() { return top; }

 /** = Get number of sides */
 public int getSides() { return sides; }

 /** Set top to faceValue */
 public void setTop(int faceValue) { top= faceValue; }

 /** = String description of this Dice */
 public String toString() {
 return getSides() + "-sided dice shows face " + getTop();
 }
} //class Dice

/** A TrickDice has one weightedSide such that the
 * weightedSide appears weight times as often as other sides
 */
class TrickDice extends Dice {

 private int weightedSide; //Weighted side appears more often
 private int weight; //Weighted side appears weight times as often as other sides

 /** TrickDice has side s appearing with weight w */
 public TrickDice(int numFaces, int s, int w) {
 super(numFaces);
 weightedSide= s;
 weight= w;
 }

 /** = Get weighted side */
 public int getWSide() { return weightedSide; }

 /** = Get weight of weighted side */
 public int getWeight() { return weight; }

 /** top gets random value in 1..sides given trick property */
 public void roll() {
 int r= randInt(1,(getSides()+weight-1));
 if (r>getSides())
 setTop(weightedSide);
 else
 setTop(r);
 }

 /** = String description of this TrickDice */
 public String toString() { return "Tricky " + super.toString(); }
} //class TrickDice

