
CS100M Lecture 24 Apr 20, 2006

1

April 20, 2006 Lecture 24 1

Previous Lecture:
Selection sort, linear search, binary search
Array of objects

Today’s Lecture:
Searching in an array of objects
Inheritance—extending a class

Reading:
Sec 7.1

April 20, 2006 Lecture 24 8

class Dice {

private int top;
private int sides;

public Dice(…) {…}
public void roll() {…}
public String toString(){…}
public int getTop() {…}
public int getSides() {…}
}

class TrickDice {

private int top;
private int sides;
private int weightedSide;
private int weight;

public TrickDice(…) {…}
public void roll() {…}
public String toString(){…}
public int getTop(){…}
public int getSides() {…}
public int getWSide() {…}
public int getWeight() {…}
}

Separate classes—each has its own members

April 20, 2006 Lecture 24 9

class Dice {

private int top;
private int sides;

public Dice(…) {…}
public void roll() {…}
public String toString(){…}
public int getTop() {…}
public int getSides() {…}
}

class TrickDice {

//everything in class Dice
//plus new/modified stuff
//below

private int weightedSide;
private int weight;

public TrickDice(…) {…}
public void roll() {…}
public String toString(){…}
public int getWSide() {…}
public int getWeight() {…}
}

Can we get all the functionality of Dice in TrickDice without
re-writing all the Dice components in class TrickDice?

April 20, 2006 Lecture 24 10

class Dice {

private int top;
private int sides;

public Dice(…) {…}
public void roll() {…}
public String toString(){…}
public int getTop() {…}
public int getSides() {…}
}

class TrickDice extends Dice
{
private int weightedSide;
private int weight;

public TrickDice(…) {…}
public void roll() {…}
public String toString(){…}
public int getWSide() {…}
public int getWeight() {…}
}

Yes! Make TrickDice a subclass of Dice.

a0

Dice5top

6sides
Dice(…)
roll()

getTop()
getSides()

TrickDice
2weightedSide

toString()

3weight
TrickDice(…)
roll()
toString()

getWSide()
getWeight()

April 20, 2006 Lecture 24 12

Inheritance
Inheritance relationships are shown in a class
diagram, with the arrow pointing to the parent class

An is-a relationship: the child is a more specific
version of the parent

Single inheritance: one parent only

Dice

TrickDice

CS100M Lecture 24 Apr 20, 2006

2

April 20, 2006 Lecture 24 14

Inheritance
Allows programmer to derive a class from an existing one

Existing class is called the parent class, or superclass

Derived class is called the child class or subclass

The child class inherits the (public) members defined for the
parent class

Inherited trait can be accessed as though it was locally
declared (defined)

April 20, 2006 Lecture 24 16

Reserved word super
Invoke constructor of superclass

super(parameter-list);

parameter-list must match that in
superclass’ constructor

April 20, 2006 Lecture 24 18

Which components get inherited?
public components get inherited
private components exist in object of child
class, but cannot be directly accessed in child
class ⇒ we say they are not inherited
Note the difference between inheritance and
existence!

April 20, 2006 Lecture 24 19

protected visibility (see Sec 7.2 for detail)

Visibility modifiers control which members get inherited

private
Not inherited, can be accessed by local class only

public
Inherited, can be accessed by all classes

protected
Inherited, can be accessed by subclasses

Access : access as though declared locally
All variables from a superclass exist in the subclass, but
the private ones cannot be accessed directly

April 20, 2006 Lecture 24 22

Important ideas in inheritance
Single inheritance
Keep common features as high in the hierarchy
as reasonably possible
Use the superclass’ features as much as possible
“Inherited” ⇒ “can be accessed as though
declared locally”
(private variables from the superclass exists in the
subclasses; they just cannot be accessed directly)

Inherited features are continually passed down
the line
Use different hierarchies for different problems

April 20, 2006 Lecture 24 23

Overriding methods
Subclass can override definition of inherited method
New method in subclass must have same signature
as superclass (but has different method body)
Which method gets used??
The object that is used to invoke a method
determines which version is used
Method declared to be final cannot be overridden
Do not confuse overriding with overloading!

/** A Dice (or Die) */
class Dice {

 private int top; // top face
 private int sides; // number of sides

 /** A Dice has numSides sides and the top face is random */
 public Dice(int numSides) {
 sides= numSides;
 roll();
 }

 /** top gets a random value in 1..sides */
 public void roll() {
 setTop(randInt(1,getSides())) ;
 }

 /** = random int in low..high */
 public static int randInt(int low, int high) {
 return (int) (Math.random()*(high-low+1))+low;
 }

 /** = Get top face */
 public int getTop() { return top; }

 /** = Get number of sides */
 public int getSides() { return sides; }

 /** Set top to faceValue */
 public void setTop(int faceValue) { top= faceValue; }

 /** = String description of this Dice */
 public String toString() {
 return getSides() + "-sided dice shows face " + getTop();
 }
} //class Dice

/** A TrickDice has one weightedSide such that the
 * weightedSide appears weight times as often as other sides
 */
class TrickDice extends Dice {

 private int weightedSide; //Weighted side appears more often
 private int weight; //Weighted side appears weight times as often as other sides

 /** TrickDice has side s appearing with weight w */
 public TrickDice(int numFaces, int s, int w) {
 super(numFaces);
 weightedSide= s;
 weight= w;
 }

 /** = Get weighted side */
 public int getWSide() { return weightedSide; }

 /** = Get weight of weighted side */
 public int getWeight() { return weight; }

 /** top gets random value in 1..sides given trick property */
 public void roll() {
 int r= randInt(1,(getSides()+weight-1));
 if (r>getSides())
 setTop(weightedSide);
 else
 setTop(r);
 }

 /** = String description of this TrickDice */
 public String toString() { return "Tricky " + super.toString(); }
} //class TrickDice

