CS100M Lecture 18 Mar 30, 2006

= Previous Lecture:
= Review methods (functions)
= Iteration with for loop
= Intro to objects and classes

= Today’s Lecture:
= Intro to objects and classes
= Creating objects and calling their methods
= OO thinking

= Reading: start reading Sec 4.1
= Announcement: Project 4 due today at 6pm

March 30, 2006 Lecture 18 1

Primitive vs non-primitive values
int x= 2;

int y= 2;

JFrame fl= new JFrame();
JFrame 2= new JFrame();
JFrame 3= f1;

March 30, 2006 Lecture 18 3

Class definition

class Rect {
vs. Object /nstantiation _ Object from class Rect
// attributes
If you want make a whole lot of cookies, you may private double left;
want to private double right;
xCJuC
y_ v]
sMake a cookie cutter—define the class
// drawRect method
=Stamp out the cookie—/nstantiate an object // area method method1() ...
- T v method2() ...
- Making a cookie cutter \\\ // perimeter method
(” ‘
\\\; Getting a cookie /// ¥
A server class
. class Rect A client class
OOP ideas
= Aggregate variables/methods into an
abstraction (a class) that makes their SCaccess |
relationship to one another explicit
= Objects (instances of a class) are self-
governing (protect and manage themselves)
= Hide details from client, and restrict client’s e \
use of the services

= Allow clients to create/get as many objects
as they want

March 30, 2006 Lecture 18 a

Data within objects should be protected: private
Provide only a set of methods for public access.

CS100M Lecture 18 Mar 30, 2006

class Rect { public class UseRect {

// attributes public static void main

private double left; (String[] args) { = We have used different classes already:

private double right; = System, Math, Scanner

// create a rect ’ ’

Rect r1 = new Rect(...); = JFrame

// drawRect method /1 caleulation on r1 = Above classes provide various services

rl.area() (related services are grouped in same class)
// area method . .

// create another rect = Implementation details of the class are
/1 perimeter method Rect r2 = new Rect(...); hidden from the client (user)

r2.drawRect()
} }

} March 30, 2006 Lecture 18 50
Class Definition Class definition: declarations
public class class-name { class Interval {
private double base; // low end
declaration (and initialization) private double width; // interval width
¥
constructor
» Declarations in a class define fields (instance
methods variables) of the class
mEach class is a tfype. Classes are not primitive
b types.
5 Declarations Revisited
al
= Syntax: type name;
base [0 | el = Examples: int count;
width [0| Interval inl;

Interval in2;

= Instance variables have default initial values
Interval() « int variables: 0
= Non-primitive (reference) variables: null

Value nul I signifies that no object is referenced

March 30, 2006 Lecture 18

