

Topics

- Reading: No new reading
- We have read online Chapters 1, 2, 3, 4, 5, and 9
- Recall recent topics
- 1-dimensional arrays (vectors)
- 2-dimensional arrays (matrices)
- Characters and strings
- Simulation and use of random number generator
- Vectorized code
- Simple plotting
- Logical arrays

Announcements

- Project 3
- Due today
- Prelim II
- Thursday, March 16, 7:30pm
- You must contact Kelly Patwell (see website) if you have any scheduling difficulties
- Room assignments: announced next week and on the Web
- Prelim 2 topics: Everything through today
- Material introduced next week will not appear on the prelim
- Review session
- This Sunday (see website)
- Review problems will be online soon

Neighborhood of a Cell

- We define the neighborhood of a cell to be the cell itself and all adjacent cells (including diagonally adjacent)

Ask Yourself Questions

- Do we know how to solve a similar problem?
- Yes, we already have code to find the min of a matrix
- Can we make a neighborhood into a matrix?
- Yes, Matlab makes it easy to do submatrices
- Neighborhood of M(row, col) is M(row-1:row +1 , col-1:col+1)
-What happens near the edges?
- Doesn't work near the edges: we "fall off"
- What can we do to fix up the edges?
- We can make the code more complicated, or...
- We can modify the matrix so we can't fall off
- If we add a border around M, what goes in the border?
- realmax

Example: Random Walk

- Write a function randomWalk(n) to perform n steps of a random walk in the plane starting from $(0,0)$
- Function header: function randomWalk(n)
- At each step, possible moves are up, down, left, or right
- Display the walk
- This part turns out to be easy
- plot(x, y, '-') where x and y are vectors draws connecting lines from $(x(0), y(0))$ to $(x(1), y(1))$ to $(x(2), y(2))$ to...

Random Walk Algorithm

- Pseudocode

Load x and y with $n+1$ zeros for each step k

Choose a random directio Update $x(k+1)$ and $y(k+1)$
Draw the result

Vectorized-Code Examples

- Write code to reverse a string
- $s=s($ end:-1:1);
- Write code to modify an integer matrix so that all even values are set to 4 and all odd values are set to 3
- $L=(\bmod (A, 2)=0)$;
- $A(L)=4 ; A(\sim L)=3$;
- Write code to produce a random sequence of H's and T's (for Heads and Tails)
- $L=(\operatorname{rand}(1,50)<0.5)$;
- $s(L)=$ 'H'
- $s(\sim L)=' T$ ';
- Write code to "rotate" a matrix clockwise
- $B=A^{\prime}$;
- $A=B($, end $:-1: 1)$

Recall: Capitalize First Letters

- We did this before with iteration (i.e., loops)
- Can use vectorized code instead
- It's not clear that this is better
- Idea: Everything after a blank should be capitalized

$L=\left(s=='^{\prime}\right) ;$	\% Find all the blanks
$L=[$ true $L(1:$ end -1$)]$	\% Shift each blank to right
$S=$ upper(s);	\% This capitalizes everything
$S(L)=S(L) ;$	\% Copies just parts of S into s

Plotting Examples

- Plot two cycles of the sine function $x=4^{*}$ pi * (0:.01:1); $\quad \%$ Choose $100 x$-values
$y=\sin (x)$; $\quad \%$ Find sine for each x $\operatorname{plot}(x, y)$; \quad Plot $\sin (x)$ using default colors
- Plot two cycles of the cosine function on the same graph
$z=\cos (x) ; \quad \%$ Find cosine of each x $\operatorname{plot}(x, y, x, z)$; $\quad \%$ Plot both $\sin (x)$ and $\cos (x)$
- Same, but use dotted lines $\operatorname{plot}\left(x, y,{ }^{\prime}: \prime \prime, x, z\right.$, ,':')

