

Announcements

- Project 3
 - Due today
- Prelim II
 - Thursday, March 16, 7:30pm
 - You must contact Kelly Patwell (see website) if you have any scheduling difficulties
 - Room assignments: announced next week and on the Web
 - Prelim 2 topics: Everything through today
 - * Material introduced next week will not appear on the prelim
 - Review session
 - This Sunday (see website)
 - Review problems will be online soon

Topics

- Reading: No new reading
 - We have read online Chapters 1, 2, 3, 4, 5, and 9
- Recall recent topics
 - 1-dimensional arrays (vectors)
 - 2-dimensional arrays (matrices)
 - Characters and strings
 - Simulation and use of random number generator
 - Vectorized code
 - Simple plotting
 - Logical arrays

Neighborhood of a Cell

 We define the neighborhood of a cell to be the cell itself and all adjacent cells (including diagonally adjacent)

7	0	7	0	G
2	4	5	2	9
4	6	3	8	1
7	0	5	2	4
3	8	6	2	1

The neighborhood of cell(2,4)

The neighborhood of cell(5,2)

Min of a Neighborhood

• Goal:

Write a function minInNeighborhood(M, row, col) that reports the minimum value in neighborhood of cell(row, col) in $matrix\ M$

• Function header

Function val = minInNeighborhood(M, row, col) % Return min in neighborhood of (row, col) in M

Ask Yourself Questions

- Do we know how to solve a similar problem?
 - Yes, we already have code to find the min of a matrix
- Can we make a neighborhood into a matrix?
 - Yes, Matlab makes it easy to do submatrices
 - Neighborhood of M(row, col) is M(row-1:row+1, col-1:col+1)
- What happens near the edges?
 - Doesn't work near the edges: we "fall off"
- What can we do to fix up the edges?
 - We can make the code more complicated, or...
 We can modify the matrix so we can't fall off
- If we add a border around M, what goes in the border?
 - realmax

Example: Random Walk

- Write a function randomWalk(n) to perform n steps of a random walk in the plane starting from (0.0)
 - Function header: function randomWalk(n)
- At each step, possible moves are up, down, left, or right
- Display the walk
 - This part turns out to be easy
 - plot(x, y, '-') where x and y are vectors draws connecting lines from (x(0), y(0)) to (x(1), y(1)) to (x(2), y(2)) to...

Ask Yourself Questions

- How do we know what to do at each step?
 - We use rand(); there are 4 equally likely directions
- How can we draw the random path?
 - Plot() makes this easy
 - We need to know all the xvalues and all the y-values
- Note: It's easier to draw the entire path than to draw one piece at a time
- How do we store the random path?
 - We can use a single n-by-2 matrix, or
 - We can use an n-vector of x-values and a separate nvector of y-values
- Does this make sense for one step?
 - ne step? • No, for one step we need...
 - The starting position (0,0)
 - And one step to either (1,0), (0,1), (-1,0), or (0,-1)
 - Thus, we should be using n+1 instead of n

Random Walk Algorithm

Pseudocode
 Load × and y with n+1 zeros
 for each step k
 Choose a random direction
 Update ×(k+1) and y(k+1)
 Draw the result

Vectorized-Code Examples

- Write code to reverse a string
 - s = s(end:-1:1);
- Write code to modify an integer matrix so that all even values are set to 4 and all odd values are set to 3
 - L = (mod(A,2) == 0);
 - A(L) = 4; A(~L) = 3;
- Write code to produce a random sequence of H's and T's (for Heads and Tails)
 - L = (rand(1, 50) < 0.5);
 - s(L) = 'H';
 - s(~L) = 'T';
- Write code to "rotate" a matrix clockwise
 - B = A';
 - A = B(:, end:-1:1);

Recall: Capitalize First Letters

- We did this before with iteration (i.e., loops)
- Can use vectorized code instead
 - It's not clear that this is better
- Idea: Everything after a blank should be capitalized

L = (s == ' '); L = [true L(1:end-1)] S = upper(s);

s(L) = S(L);

% Find all the blanks

% Shift each blank to right

% This capitalizes everything

% Copies just parts of S into s

Plotting Examples

• Plot two cycles of the sine function

 $\begin{array}{lll} x = 4 \ ^\circ pi \ ^\star (0:.01:1); & \% \ Choose \ 100 \ x-values \\ y = sin(x); & \% \ Find \ sine \ for \ each \ x \\ plot(x,y); & \% \ Plot \ sin(x) \ using \ default \ colors \end{array}$

Plot two cycles of the cosine function on the same graph

z = cos(x); % Find cosine of each x plot(x, y, x, z); % Plot both sin(x) and cos(x)

 Same, but use dotted lines plot(x, y, 'i', x, z, 'i')