Matlab Review

Lecture 14 (Mar 9)
CS100M - Spring 2006

Announcements

* Project 3
= Due today

* Prelim IT
= Thursday, March 16, 7:30pm
= You must contact Kelly Patwell (see website) if you have
any scheduling difficulties
= Room assignments: announced next week and on the Web
® Prelim 2 topics: Everything through today
¢ Material infroduced next week will not appear on the prelim
= Review session
+ This Sunday (see website)
+ Review problems will be online soon

Topics

* Reading: No new reading
= We have read online Chapters 1, 2, 3,4, 5, and 9

* Recall recent topics
= 1-dimensional arrays (vectors)
= 2-dimensional arrays (matrices)
= Characters and strings
= Simulation and use of random number generator
= Vectorized code
= Simple plotting
= Logical arrays

Neighborhood of a Cell

* We define the neighborhood of a cell to be the cell
itself and all adjacent cells (including diagonally
adjacent)

The neighborhood
of cell(2,4)

The neighborhood
of cell(5,2)

Min of a Neighborhood

* Goal:
Werite a function minInNeighborhood(M, row, col)
that reports the minimum value in neighborhood of
cell(row, col) in matrix M

* Function header
Function val = minInNeighborhood(M, row, col)
% Return min in neighborhood of (row, col) in M

Ask Yourself Questions

* Do we know how to solve a similar problem?

= Yes, we already have code to find the min of a matrix
* Can we make a neighborhood into a matrix?

* Yes, Matlab makes it easy to do submatrices

= Neighborhood of M(row, col) is M(row-1:row+1, col-1:col+1)
* What happens near the edges?

= Doesn't work near the edges: we “fall of f"
* What can we do to fix up the edges?

= We can make the code more complicated, or...

= We can modify the matrix so we can't fall of f
* If we add a border around M, what goes in the

border?
* realmax

Example: Random Walk

* Write a function randomWalk(n) to perform n
steps of a random walk in the plane starting from
(0.0

= Function header: function randomWalk(n)

* At each step, possible moves are up, down, left, or
right

* Display the walk
= This part turns out to be easy

= plot(x, y, -') where x and y are vectors draws connecting
lines from (x(0), y(0)) to (x(1), y(1)) to (x(2), y(2)) to...

Ask Yourself Questions

* How do we know what to do * How do we store the random

at each step? path?
= We use rand(); there are = We can use a single n-by-2
4 equally likely directions matrix, or

= We can use an n-vector of
x-values and a separate n-
vector of y-values
* Does this make sense for
onhe step?

* How can we draw the
random path?
= Plot() makes this easy
= We need to know all the x-
values and all the y-values * No, for one step we need..
= Note: It's easier to draw ‘ g'g)smrﬁ"g position
the entire Path than fo . Ar;d one step o either
draw one piece at a time (1.0), (0.1), (-1,0), or (0,-1)
= Thus, we should be using
n+1 instead of n

Random Walk Algorithm

fosn ek b * 18 8.

* Pseudocode
Load x and y with n+1 zeros
for each step k
Choose a random directiol
Update x(k+1) and y(k+1)
Draw the result

Vectorized-Code Examples

* Write code to reverse a * Write code to produce a
string random sequence of H's and
= s = s(end:-1:1); T's (for Heads and Tails)
= L = (rand(1, 50) < 0.5);
* Write code o modify an = s(L)="H:
integer matrix so that all = s(L)="T:
even values are set to 4 and
all odd values are set o 3 « Write code to “rotate” a
® L =(mod(A,2)==0): matrix clockwise
= AL)=4 A(~L)=3; = Bz A"

= A=B(, end:-1:1);

Recall: Capitalize First Letters

* We did this before with iteration (i.e., loops)

* Can use vectorized code instead
= It's not clear that this is better

* Idea: Everything after a blank should be

capitalized
L=(s==""); % Find all the blanks
L =[true L(l:iend-1)] % Shift each blank to right
S = upper(s): % This capitalizes everything
s(L) = S(L); % Copies just parts of S into s

Plotting Examples

* Plot two cycles of the sine function

x = 4*pi* (0:.01:1); % Choose 100 x-values
y = sin(x); % Find sine for each x
plot(x, y): % Plot sin(x) using default colors

* Plot two cycles of the cosine function on the same

graph
z = cos(x); % Find cosine of each x
plot(x,y, x, z); % Plot both sin(x) and cos(x)

e Same, but use dotted lines
plot(x,y, ", x, z, %)

