
1

Matlab Review

Lecture 14 (Mar 9)
CS100M – Spring 2006

Announcements

Project 3
Due today

Prelim II
Thursday, March 16, 7:30pm
You must contact Kelly Patwell (see website) if you have
any scheduling difficulties
Room assignments: announced next week and on the Web
Prelim 2 topics: Everything through today

Material introduced next week will not appear on the prelim
Review session

This Sunday (see website)
Review problems will be online soon

Topics

Reading: No new reading
We have read online Chapters 1, 2, 3, 4, 5, and 9

Recall recent topics
1-dimensional arrays (vectors)
2-dimensional arrays (matrices)
Characters and strings
Simulation and use of random number generator
Vectorized code
Simple plotting
Logical arrays

Neighborhood of a Cell

We define the neighborhood of a cell to be the cell
itself and all adjacent cells (including diagonally
adjacent)

6
5
3
5
7

2
2
8
2
0

164
407
183

642
507 The neighborhood

of cell(2,4)

The neighborhood
of cell(5,2)

Min of a Neighborhood

Goal:
Write a function minInNeighborhood(M, row, col)
that reports the minimum value in neighborhood of
cell(row, col) in matrix M

Function header
Function val = minInNeighborhood(M, row, col)
% Return min in neighborhood of (row, col) in M

Ask Yourself Questions

Do we know how to solve a similar problem?
Yes, we already have code to find the min of a matrix

Can we make a neighborhood into a matrix?
Yes, Matlab makes it easy to do submatrices
Neighborhood of M(row, col) is M(row-1:row+1, col-1:col+1)

What happens near the edges?
Doesn’t work near the edges: we “fall off”

What can we do to fix up the edges?
We can make the code more complicated, or…
We can modify the matrix so we can’t fall off

If we add a border around M, what goes in the
border?

realmax

2

Example: Random Walk

Write a function randomWalk(n) to perform n
steps of a random walk in the plane starting from
(0,0)

Function header: function randomWalk(n)

At each step, possible moves are up, down, left, or
right

Display the walk
This part turns out to be easy
plot(x, y, ‘-’) where x and y are vectors draws connecting
lines from (x(0), y(0)) to (x(1), y(1)) to (x(2), y(2)) to…

Ask Yourself Questions
How do we know what to do
at each step?

We use rand(); there are
4 equally likely directions

How can we draw the
random path?

Plot() makes this easy
We need to know all the x-
values and all the y-values
Note: It’s easier to draw
the entire path than to
draw one piece at a time

How do we store the random
path?

We can use a single n-by-2
matrix, or
We can use an n-vector of
x-values and a separate n-
vector of y-values

Does this make sense for
one step?

No, for one step we need…
The starting position
(0,0)
And one step to either
(1,0), (0,1), (-1,0), or (0,-1)

Thus, we should be using
n+1 instead of n

Random Walk Algorithm

Pseudocode
Load x and y with n+1 zeros
for each step k

Choose a random direction
Update x(k+1) and y(k+1)

Draw the result

Vectorized-Code Examples
Write code to reverse a
string

s = s(end:-1:1);

Write code to modify an
integer matrix so that all
even values are set to 4 and
all odd values are set to 3

L = (mod(A,2) == 0);
A(L) = 4; A(~L) = 3;

Write code to produce a
random sequence of H’s and
T’s (for Heads and Tails)

L = (rand(1, 50) < 0.5);
s(L) = ‘H’;
s(~L) = ‘T’;

Write code to “rotate” a
matrix clockwise

B = A’;
A = B(:, end:-1:1);

Recall: Capitalize First Letters

We did this before with iteration (i.e., loops)

Can use vectorized code instead
It’s not clear that this is better

Idea: Everything after a blank should be
capitalized

L = (s == ‘ ’); % Find all the blanks
L = [true L(1:end-1)] % Shift each blank to right
S = upper(s); % This capitalizes everything
s(L) = S(L); % Copies just parts of S into s

Plotting Examples

Plot two cycles of the sine function
x = 4 * pi * (0:.01:1); % Choose 100 x-values
y = sin(x); % Find sine for each x
plot(x, y); % Plot sin(x) using default colors

Plot two cycles of the cosine function on the same
graph

z = cos(x); % Find cosine of each x
plot(x, y, x, z); % Plot both sin(x) and cos(x)

Same, but use dotted lines
plot(x, y, ‘:’, x, z, ‘:’)

