
1

Simulation
&

Logical Arrays

Lecture 13 (Mar 7)
CS100M – Spring 2006

Announcements

Project 3
Due: Thursday, March 9
Demo

Prelim II
7:30pm
Thursday, March 16
Includes material through this week

Topics

Reading: CFile 9, Section 9.3

Recall
Matlab vectors (1D arrays) & matrices (2D arrays)
Characters & Strings
Vectorized code

Plans for today
Simulation
More on Logical arrays

Simulation
The application of
mathematical and computer
models to imitate the
behavior of a system

Usually a real-world system
(but not always)
Useful for design, training,
& games

Matlab provides many tools
useful for simulation

We’ll examine some very
simple simulations

Example: Simulation of Darts
Goal: Simulate darts thrown
at a simple target to derive
an estimate of π

We did this example earlier
using iteration

Assume hits are distributed
uniformly over this 2-by-2
square

Nin/N = Acircle/Asquare = π/4

Original Code (for Just One Throw)
close all
hold on
axis('equal');
axis([-1 1 -1 1]);

px = 2*rand - 1;
py = 2*rand - 1;
if (px^2 + py^2 <= 1)

plot(px, py, 'og');
else

plot(px, py, 'or');
end

2

Throwing Darts using Vectorized Code
How can we compute all
throws at once by using
a nDarts-by-2 matrix?

How can we determine
each throw’s distance
from origin?

How can we count how
many of the throws are
within the circle?

function estimate = approxPi(nDarts)

throws = -1 + 2*rand(nDarts, 2);
x = throws(:, 1);
y = throws(:, 2);

dist = sqrt(x.^2 + y.^2);
in = sum(dist <= 1);
estimate = 4 * in/nDarts;

Example: Rolling a Fair Die
Goal: Simulate the rolling of
a fair die and create a
histogram of the outcome

How can we compute all the
die rolls at once?

How can we count how many
of each roll occurred?

function count = rollDie (nRolls)

count= zeros(1,6);
rolls = ceil(6 * rand(1, nRolls));

for k= 1:6
count(k) = sum(rolls == k);

end

More about Logical Arrays

Logical arrays
Occur when you use vectorized relational operators
Consist of 0’s (for false) and 1’s (for true)

In examples up to now, we’ve mostly used function
sum() to count the number of true items in a
logical array

Example: Count the number of s’s in a sentence:
sum(‘s’ == ‘This is a sentence.’)

The Workspace viewer (in the Desktop menu)
shows the “class” of each of your variables

Logical Arrays Can Be Subscripts!

When used in this way, the logical array “picks out”
just some of the items

Example: v = [7 0 5 2 4 6 3 8 1]
logical = v > 4; % [1 0 1 0 0 1 0 1 0]
selection = v(logical); % [7 5 6 8]
selection = v(~logical); % [0 2 4 3 1]

This works on 2D arrays (matrices), too
But the matrix and the logical array must have same
shape
The result is always a column vector
Example: v = [7 0 5; 2 4 6; 3 8 1]

logical = v > 4; % [1 0 1; 0 0 1; 0 1 0]
selection = v(logical); % [7; 5; 6; 8]

You Can Use Logical Subscripts to
Assign to Part of an Array

Example: To “zero out” all the negative numbers in a
matrix

m = 20*rand(5,5) – 10; % Random #s between –10 and 10
logical = m < 0; % 5-by-5 logical array
m(logical) = 0; % Sets all negative #s to 0

Example: To replace all occurrences of a letter in a
string

s = ‘assign to part of an array’;
s(s == ‘a’) = ‘x’; % ‘xssign to pxrt of xn xrrxy’

Can Find Indices using Find()

Example: v = [7 0 5 2 4 6 3 8 1]
logical = v < 3; % [0 1 0 1 0 0 0 0 1]
indices = find(v < 3); % [2 4 9]

Example: v = [7 0 5; 2 4 6; 3 8 1]
logical = v < 3; % [0 1 0; 1 0 0; 0 0 1]
[r c] = find(v < 3); % r = [2; 1; 3]

% c = [1; 2; 3]
% I.e., (2,1), (1,2), (3,3)

