

Announcements

- Project 3
- Due: Thursday, March 9
- Demo
- Prelim II
- 7:30pm
- Thursday, March 16
- Includes material through this week

Topics

- Reading: CFile 9, Section 9.3
- Recall
- Matlab vectors (1D arrays) \& matrices (2D arrays)
- Characters \& Strings
- Vectorized code
- Plans for today
- Simulation
- More on Logical arrays

Simulation

- The application of
mathematical and computer models to imitate the
behavior of a system
- Usually a real-world system (but not always)
- Useful for design, training \& games
- Matlab provides many tools useful for simulation
- We'll examine some very simple simulations

Example: Simulation of Darts

- Goal: Simulate darts thrown at a simple target to derive an estimate of π
- We did this example earlier using iteration
- Assume hits are distributed uniformly over this 2-by-2 square
- $N_{\text {in }} / N=A_{\text {circle }} / A_{\text {square }}=\pi / 4$

Original Code (for Just One Throw)
close all
hold on
axis('equal');
axis([-1 $\left.\left.1 \begin{array}{lll}-1 & -1\end{array}\right]\right)$;
$p x=2 *$ rand -1 ;
py = 2*rand - 1;
if $\left(p x^{\wedge} 2+p y^{\wedge} 2<=1\right)$
plot(px, py, 'og');

else
plot(px, py, 'or');
end

Throwing Darts using Vectorized Code

- How can we compute all throws at once by using a nDarts-by-2 matrix?
- How can we determine each throw's distance from origin?
- How can we count how many of the throws are within the circle?
function estimate $=$ approxPi(nDarts)
throws $=-1+2^{*}$ rand(nDarts, 2$)$
$x=$ throws(: 1);
$y=$ throws(: 2);
dist $=\operatorname{sqrt}\left(x .^{\wedge} 2+y .{ }^{\wedge} 2\right)$;
in = sum(dist <= 1);
estimate $=4$ * $\mathrm{in} / \mathrm{nD}$ Darts

Example: Rolling a Fair Die

a fair die and create a histogram of the outcome

- How can we compute all the die rolls at once?
- How can we count how many of each roll occurred?

More about Logical Arrays

- Logical arrays
- Occur when you use vectorized relational operators
- Consist of 0's (for false) and 1's (for true)
- In examples up to now, we've mostly used function sum() to count the number of true items in a logical array
- Example: Count the number of s's in a sentence: sum('s' == 'This is a sentence.')
- The Workspace viewer (in the Desktop menu) shows the "class" of each of your variables

Logical Arrays Can Be Subscripts!

- When used in this way, the logical array "picks out" just some of the items
- Example: $v=\left[\begin{array}{ll}705 & 546381\end{array}\right]$
logical = v>4; $\%[101001010]$
selection $=\mathrm{v}$ (logical); $\%$ [7568]
selection $=v(\sim$ logical $) ; \quad \%\left[\begin{array}{lll}0 & 2431\end{array}\right]$
- This works on 2D arrays (matrices), too
- But the matrix and the logical array must have same shape
- The result is always a column vector
- Example: v = [$705 ; 246 ; 381$]
logical $=v>4 ; \quad \%[101 ; 001 ; 010]$
selection $=\mathrm{v}$ (logical); $\quad \%[7 ; 5 ; 6 ; 8]$

You Can Use Logical Subscripts to Assign to Part of an Array

- Example: To "zero out" all the negative numbers in a matrix
$m=20^{*}$ rand(5,5) - 10; $\%$ Random \#s between -10 and 10
logical $=m<0 ; \quad \% 5-$ by- 5 logical array $m($ logical $)=0 ; \quad$ \% Sets all negative \#s to 0
- Example: To replace all occurrences of a letter in a string
$s=$ 'assign to part of an array';
$s(s==' a$ ') = ' x '; $\quad \%$ 'xssign to pxrt of $x n \times r r x y$ '

Can Find Indices using Find()

- Example: $v=\left[\begin{array}{ll}7 & 0 \\ 5 & 246381\end{array}\right]$
logical $=v<3 ; \quad \%[010100001]$
indices $=$ find $(v<3)$; \quad [249]
- Example: $v=[705 ; 246 ; 381$]
logical $=v<3 ; \quad \%[010 ; 100 ; 001]$
$[r c]=$ find $(v<3) ; \quad \% r=[2 ; 1 ; 3]$
$\% c=[1 ; 2 ; 3]$
\% I.e., $(2,1),(1,2),(3,3)$

