Vectorized Code

Lecture 12 (Mar 2)
CS100M - Spring 2006

lanterns in rows PR

Announcements

* Project 3

= Is either online now or will be online later today

= Due: Thursday, March 9

Topics
* Reading: CFile 9, Section 9.2

* Recall
= Matlab vectors (1D arrays)
= Characters & Strings
= Matrices (2D arrays)

* Plans for today
= Vectorized code
= Pre-allocating arrays
= Logical arrays

Vectorized Code

* Most Matlab operations are
designed to work on entire
vectors or entire matrices

= This includes arithmetic,
relational, and logical
operations

= Also includes most built-in
functions (e.g., sin, cos,
mod, floor, exp, log, etc.)

* Code that operates on
entire vectors (or matrices)
instead of on scalars is said
to be vectorized code

* Examples
x = [10 20 30];
y=13;
z=[212]

% Addition, subtraction
x+y % [11 22 33]
x-y % [9 18 27]

% Mult, division, power
% Must include the DOT "."

x Xy % [10 40 90]
x./y % [10 10 10]
x."z % [100 20 900]

Dot-Operators

* Matlab is especially set up for Linear Algebra
= Thus, "*","/", and """ correspond to matrix operations

* Term-by-term operators use ".*","./", and ".""

= Matlab documentation calls these “array operations” (as
opposed to “"matrix operations")

* Why doesn't Matlab include operators ".+" and *.-"?

Shapes Must Match

* Examples

a=[4812]

b =[1; 2: 4] % Column vector

a+b % Error
a+b' % [5 10 16]
a./b % Error
a./b % [4; 4; 3]

« Exception to shape matching
= Scalars follow special rules

= "A scalar can operate into
anything”

* Scalar examples

a+1 % [5913]
10+a % [14 18 22]
2*a % [8 16 24]
a./2 % [246]

24 /a % [632]
ar2 % [16 64 144]

Example: Pair-Sums

« Given a vector, report the « Iterative code
vector of pair-sums (i.e., the function s = pairSum(v)
sums of adjacent items) % Return vector Vs pair sums

= Example: The pair-sum for s=[I
[7052]is[757] for k = 1: length(v)-1
s(Kk) = v(k) + v(k+1);
 Function header end
function s = pairSum(v)
% Return vector v's pair sums Vectorized code
function s = pairSum(v)
% Return vector V's pair sums
s = v(liend-1) + v(2:end);

Relational Operators

wonown W

 Comparison operators (e.g., <", ">", "==", efc.) also
operate term-by-term, creating arrays of boolean

values

* Examples
a=[705246]
b=16
a<b %[010110]

a==b %[000001]

Logical Operators

* Logical operators (e.g., "&", "|") also operate term-
by-term, creating arrays of boolean values
= In Matlab, any nonzero value is considered to be “true”

* Examples
a=[705246]
b=16
adb %[101111]
a<b & mod(b,2) == 0 %[010100]
a<b && mod(b,2) == % Error

Short-Circuit Logical Operators

* Why two versions (&, &&) of “and"?
= In <operand> & <operand>, both operands are evaluated
before the &-operation is done
= In<operand> && <operand>, the first operand is evaluated:
if it's false then we don't bother evaluating the other

operand

* Similar for the two versions (|, ||) of “or"

= In<operand> || <operand>, the first operand is evaluated;
if it's true then we don't bother evaluating the other

operand
* Example use:

while (k > 0 && v(k) < 100) % Without short-circuit, Error

Example: How Many F's?

* Goal: Determine how many * Iterative code
times a particular character function n = charCount(s,c)
appears in a string % Report # of c's in string s
= Example: How many f's in n=0;
"An example of efficiently for k = 1: length(s)
finding f* if s(K) == ¢
. n=n+l;
* Function header end
function n = charCount(s,c) end

% Report # of c's in string s

* Vectorized code
function n = charCount(s,c)
% Report # of c's in string s
n=sum(c == s);

Pre-allocating Arrays

* Recall the iterative version
of the pair-sum example
function s = pairSum(v)
% Return vector V's pair sums
s=[I
for k = 1: length(v)-1
s(Kk) = v(k) + v(k+1);
end

* Vector s grows as needed

= This works fine in Matlab,
but...
= It's slow

* It will run faster if we pre-
allocate the array s
function s = pairSum(v)
% Return vector Vs pair sums
s = zeros(length(v) - 1);
for k = 1: length(v)-1
s(k) = v(k) + v(k+1);

end

* Note though that
vectorized code is even
faster!

Improving Efficiency

* For efficiency
= Use vectorized code if possible
= If you must use a loop, pre-allocate any arrays

* We can write a program to test these ideas

= Matlab provides built-in functions “tic" (start timer) and
“toc" (report time elapsed since tic)

Example: Polynomial Evaluation

function p = polyEval(coeff, x)
% Evaluate polynomial at x; coeff is vector of coefficients.
% coeff(1) is the constant term.

% Original code
p=0;
for k = L:length(coeff)
p = p + coeff(k)*x"(k-1);
end

% Vectorized replacement code
d = length(coeff) - 1; % Degree of polynomial
p = sum(coeff .* (x .~ (0:d)))

Which will produce a vector of perfect
squares up to 100?

1. (1:10).% 2

2. (1:10) * (1:10)
*» 3. Both of the above

0% 0% 0%

' :

Which will produce the vector of even
numbers between 1 and 101?

1:2:101
. 2:2:101
. 2:2:100
. 2 *(1:50)
. (1:50) * 2
. All of the above
. All of 1 thru 5 except 1
. All of 1thru 5 except 3
. All of 1thru 5 except 5

O O NOOLD Wwn =

0% 0% 0% 0% 0% 0% 0%

iz 3 4 s 6 7

What does this code do?
¢ = sum(mod(v, 2) == 0) % v is a vector

1. Nothing; there is an error
»2. c is the humber of even
numbers in vector v
3. cis the number of odd
numbers in vector v

09 09 09

' :

What does this code do?
¢ = floor(sqrt(v)) .” 2 % v is a vector

1. Nothing; there is an error

2. cis the number perfect
squares in vector v

3. Each number invis
» converted into a nearby

perfect square

09 09 09

1 :

Which of the following will not produce a
3-by-3 matrix of 3's?

3 * ones(3,3)
. 2 +ones(3,3)
. zeros(3,3)+3
. [333:333;333]
. z=ones(3,3); z(:,}) =3
»6. None of the above; they all
work

O bhwN R

0% 0% 0% 0% 0% 0%

1 2 3 I3

Neighborhood of a Cell

* We define the neighborhood of a cell to be the cell
itself and all adjacent cells (including diagonally
adjacent)

The neighborhood
of cell(2,4)

The neighborhood
of cell(5,2)

Min of a Neighborhood

* Goal:
Write a function minInNeighborhood(M, row, col)
that reports the minimum value in neighborhood of
cell(row, col) in matrix M

* Function header
Function val = minInNeighborhood(M, row, col)
% Return min in neighborhood of (row, col) in M

Ask Yourself Questions

* Do we know how to solve a similar problem?

= Yes, we already have code to find the min of a matrix
* Can we make a heighborhood into a matrix?

= Yes, Matlab makes it easy to do submatrices

= Neighborhood of M(row, col) is M(row-1:row+1, col-1:col+1)
* What happens near the edges?

= Doesn't work near the edges: we “fall of f*
* What can we do to fix up the edges?

= We can make the code more complicated, or...

= We can modify the matrix so we can't fall of f
* If we add a border around M, what goes in the

border?
= realmax

