
1

Vectorized Code

Lecture 12 (Mar 2)
CS100M – Spring 2006

Announcements

Project 3
Is either online now or will be online later today
Due: Thursday, March 9

Topics

Reading: CFile 9, Section 9.2

Recall
Matlab vectors (1D arrays)
Characters & Strings
Matrices (2D arrays)

Plans for today
Vectorized code
Pre-allocating arrays
Logical arrays

Vectorized Code
Most Matlab operations are
designed to work on entire
vectors or entire matrices

This includes arithmetic,
relational, and logical
operations
Also includes most built-in
functions (e.g., sin, cos,
mod, floor, exp, log, etc.)

Code that operates on
entire vectors (or matrices)
instead of on scalars is said
to be vectorized code

Examples
x = [10 20 30];
y = 1:3;
z = [2 1 2];

% Addition, subtraction
x + y % [11 22 33]
x – y % [9 18 27]

% Mult, division, power
% Must include the DOT “.”
x .* y % [10 40 90]
x ./ y % [10 10 10]
x .^ z % [100 20 900]

Dot-Operators

Matlab is especially set up for Linear Algebra
Thus, “*”, “/”, and “^” correspond to matrix operations

Term-by-term operators use “.*”, “./”, and “.^”
Matlab documentation calls these “array operations” (as
opposed to “matrix operations”)

Why doesn’t Matlab include operators “.+” and “.-”?

Shapes Must Match
Examples

a = [4 8 12]
b = [1; 2; 4] % Column vector

a + b % Error
a + b’ % [5 10 16]

a ./ b % Error
a’ ./ b % [4; 4; 3]

Exception to shape matching
Scalars follow special rules
“A scalar can operate into
anything”

Scalar examples
a + 1 % [5 9 13]
10 + a % [14 18 22]
2 .* a % [8 16 24]
a ./ 2 % [2 4 6]
24 ./ a % [6 3 2]
a .^ 2 % [16 64 144]

2

Example: Pair-Sums
Given a vector, report the
vector of pair-sums (i.e., the
sums of adjacent items)

Example: The pair-sum for
[7 0 5 2] is [7 5 7]

Function header
function s = pairSum(v)
% Return vector v’s pair sums

Iterative code
function s = pairSum(v)
% Return vector v’s pair sums
s = [];
for k = 1: length(v)-1

s(k) = v(k) + v(k+1);
end

Vectorized code
function s = pairSum(v)
% Return vector v’s pair sums
s = v(1:end-1) + v(2:end);

Relational Operators

Comparison operators (e.g., “<”, “>”, “==”, etc.) also
operate term-by-term, creating arrays of boolean
values

Examples
a = [7 0 5 2 4 6]
b = 1:6
a < b % [0 1 0 1 1 0]
a == b % [0 0 0 0 0 1]

Logical Operators

Logical operators (e.g., “&”, “|”) also operate term-
by-term, creating arrays of boolean values

In Matlab, any nonzero value is considered to be “true”

Examples
a = [7 0 5 2 4 6]
b = 1:6
a & b % [1 0 1 1 1 1]
a < b & mod(b,2) == 0 % [0 1 0 1 0 0]
a < b && mod(b,2) == 0 % Error

Short-Circuit Logical Operators

Why two versions (&, &&) of “and”?
In <operand> & <operand>, both operands are evaluated
before the &-operation is done
In <operand> && <operand>, the first operand is evaluated;
if it’s false then we don’t bother evaluating the other
operand

Similar for the two versions (|, ||) of “or”
In <operand> || <operand>, the first operand is evaluated;
if it’s true then we don’t bother evaluating the other
operand

Example use:
while (k > 0 && v(k) < 100) % Without short-circuit, Error
…

Example: How Many F’s?
Goal: Determine how many
times a particular character
appears in a string

Example: How many f’s in
“An example of efficiently
finding f”

Function header
function n = charCount(s,c)
% Report # of c’s in string s

Iterative code
function n = charCount(s,c)
% Report # of c’s in string s
n = 0;
for k = 1: length(s)

if s(k) == c
n = n +1;

end
end

Vectorized code
function n = charCount(s,c)
% Report # of c’s in string s
n = sum(c == s);

Pre-allocating Arrays
Recall the iterative version
of the pair-sum example

function s = pairSum(v)
% Return vector v’s pair sums
s = [];
for k = 1: length(v)-1

s(k) = v(k) + v(k+1);
end

Vector s grows as needed
This works fine in Matlab,
but…
It’s slow

It will run faster if we pre-
allocate the array s

function s = pairSum(v)
% Return vector v’s pair sums
s = zeros(length(v) - 1);
for k = 1: length(v)-1

s(k) = v(k) + v(k+1);
end

Note though that
vectorized code is even
faster!

3

Improving Efficiency

For efficiency
Use vectorized code if possible
If you must use a loop, pre-allocate any arrays

We can write a program to test these ideas
Matlab provides built-in functions “tic” (start timer) and
“toc” (report time elapsed since tic)

Example: Polynomial Evaluation
function p = polyEval(coeff, x)
% Evaluate polynomial at x; coeff is vector of coefficients.
% coeff(1) is the constant term.

% Original code
p = 0;
for k = 1:length(coeff)

p = p + coeff(k)*x^(k-1);
end

% Vectorized replacement code
d = length(coeff) – 1; % Degree of polynomial
p = sum(coeff .* (x .^ (0:d)))

Which will produce a vector of perfect
squares up to 100?

1 2 3

0% 0%0%

1. (1:10) .^ 2
2. (1:10) .* (1:10)
3. Both of the above

:100 of 400

Which will produce the vector of even
numbers between 1 and 101?

:100 of 400
1 2 3 4 5 6 7 8 9

0% 0% 0% 0% 0%0%0%0%0%

1. 1:2:101
2. 2:2:101
3. 2:2:100
4. 2 .* (1:50)
5. (1:50) .* 2
6. All of the above
7. All of 1 thru 5 except 1
8. All of 1 thru 5 except 3
9. All of 1 thru 5 except 5

What does this code do?
c = sum(mod(v, 2) == 0) % v is a vector

:100 of 400
1 2 3

0% 0%0%

1. Nothing; there is an error
2. c is the number of even

numbers in vector v
3. c is the number of odd

numbers in vector v

What does this code do?
c = floor(sqrt(v)) .^ 2 % v is a vector

:100 of 400
1 2 3

0% 0%0%

1. Nothing; there is an error
2. c is the number perfect

squares in vector v
3. Each number in v is

converted into a nearby
perfect square

4

Which of the following will not produce a
3-by-3 matrix of 3’s?

:100 of 400
1 2 3 4 5 6

0% 0% 0%0%0%0%

1. 3 .* ones(3,3)
2. 2 + ones(3,3)
3. zeros(3,3) + 3
4. [3 3 3; 3 3 3; 3 3 3]
5. z = ones(3,3); z(:,:) = 3
6. None of the above; they all

work

Neighborhood of a Cell

We define the neighborhood of a cell to be the cell
itself and all adjacent cells (including diagonally
adjacent)

6
5
3
5
7

2
2
8
2
0

164
407
183

642
507 The neighborhood

of cell(2,4)

The neighborhood
of cell(5,2)

Min of a Neighborhood

Goal:
Write a function minInNeighborhood(M, row, col)
that reports the minimum value in neighborhood of
cell(row, col) in matrix M

Function header
Function val = minInNeighborhood(M, row, col)
% Return min in neighborhood of (row, col) in M

Ask Yourself Questions

Do we know how to solve a similar problem?
Yes, we already have code to find the min of a matrix

Can we make a neighborhood into a matrix?
Yes, Matlab makes it easy to do submatrices
Neighborhood of M(row, col) is M(row-1:row+1, col-1:col+1)

What happens near the edges?
Doesn’t work near the edges: we “fall off”

What can we do to fix up the edges?
We can make the code more complicated, or…
We can modify the matrix so we can’t fall off

If we add a border around M, what goes in the
border?

realmax

