

Topics

- Reading: CFile 9, Section 9.2
- Recall
- Matlab vectors (1D arrays)
- Characters \& Strings
- Matrices (2D arrays)
- Plans for today
- Vectorized code
- Pre-allocating arrays
- Logical arrays

Announcements

- Project 3
- Is either online now or will be online later today
- Due: Thursday, March 9

Vectorized Code

- Most Matlab operations are - Examples
designed to work on entire vectors or entire matrices
- This includes arithmetic, relational, and logical operations
- Also includes most built-in functions (e.g., \sin , \cos, mod, floor, exp, log, etc.)
- Code that operates on entire vectors (or matrices) instead of on scalars is said to be vectorized code
$x=\left[\begin{array}{ll}10 & 20 \\ 30\end{array}\right] ;$
$y=1: 3 ;$
$z=\left[\begin{array}{lll}2 & 1 & 2\end{array}\right] ;$
\% Addition, subtraction
$x+y \quad \%\left[\begin{array}{llll}11 & 22 & 33\end{array}\right]$
$x-y \quad \%\left[\begin{array}{lll}9 & 18 & 27\end{array}\right]$
\% Mult, division, power
\% Must include the DOT "."
x.* y \% [10 40 90]
$x . / y \quad \%\left[\begin{array}{lll}10 & 10 & 10\end{array}\right]$
$x .^{\wedge} z \%\left[\begin{array}{lll}100 & 20900\end{array}\right]$

Dot-Operators

- Matlab is especially set up for Linear Algebra
- Thus, "*", "/", and "^" correspond to matrix operations
- Term-by-term operators use ".*", "./", and ".^"
- Matlab documentation calls these "array operations" (as opposed to "matrix operations")
- Why doesn't Matlab include operators ".+" and ".-"?

Shapes Must Match

- Examples
$\left.\begin{array}{ll}a=\left[\begin{array}{lll}4 & 8 & 12\end{array}\right] \\ b=\left[\begin{array}{ll}1 ; & 2 ; 4\end{array}\right] & \text { \% Column vector } \\ & \\ a+b & \% \text { Error } \\ a+b^{\prime} & \%[51016\end{array}\right]$
- Exception to shape matching
- Scalars follow special rules
- "A scalar can operate into anything"
- Scalar examples
$a+1 \quad \%\left[\begin{array}{lll}5 & 9 & 13\end{array}\right]$
$10+a \quad \%\left[\begin{array}{lll}14 & 18 & 22\end{array}\right]$
2.*a \% [8 16 24]
a. $/ 2$ \% [246]
24./a \% [lllll 631$]$
a.^2 2 [16 64 144]

Example: Pair-Sums

```
-Given a vector, report the
    vector of pair-sums (i.e., the
    sums of adjacent items)
        - Example: The pair-sum for
        [705 2] is [757]
- Function header
    functions = pairSum(v)
    % Return vector v's pair sums
```

- Iterative code
function $s=\operatorname{pairSum}(v)$
\% Return vector v's pair sums
$s=[] ;$
for $k=1$: length $(v)-1$
$s(k)=v(k)+v(k+1) ;$
end
- Vectorized code
function $s=\operatorname{pairSum}(v)$
$\%$ Return vector v's pair sums
$s=v(1:$ end -1$)+v(2$:end $)$;

Logical Operators

- Logical operators (e.g., "\&", "|") also operate term-by-term, creating arrays of boolean values
- In Matlab, any nonzero value is considered to be "true"
- Examples
$a=\left[\begin{array}{lllll}7 & 0 & 5 & 2 & 4\end{array}\right]$
$b=1: 6$
$a \& b \quad \%[101111]$
$a<b \& \bmod (b, 2)==0 \quad \%[0101010]$
$a<b \& \& \bmod (b, 2)==0 \quad \%$ Error

Relational Operators

- Comparison operators (e.g., "<", ">", "==", etc.) also operate term-by-term, creating arrays of boolean values
- Examples
$a=\left[\begin{array}{llll}7 & 5 & 2 & 4\end{array}\right]$
$b=1: 6$
$a<b \quad \%[010110]$
$a==b \quad \%\left[\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

Short-Circuit Logical Operators

- Why two versions (\&, \&\&) of "and"?
- In <operand> \& <operand>, both operands are evaluated before the \&-operation is done
- In <operand> \&\& <operand>, the first operand is evaluated; if it's false then we don't bother evaluating the other operand
- Similar for the two versions ($|,| |$) of "or"
- In <operand> || <operand>, the first operand is evaluated; if it's true then we don't bother evaluating the other operand
- Example use:
while ($k>0$ \& \& $v(k)<100$) \% Without short-circuit, Error

Example: How Many F's?

- Goal: Determine how many times a particular character appears in a string
- Example: How many f's in
"An example of efficiently finding $f^{\prime \prime}$
- Function header
function $n=$ charCount(s, c)
\% Report \# of c's in string s
- Iterative code
function $n=$ charCount (s, c)
\% Report \# of c's in string s
$n=0$;
for $k=1$: length(s) if $s(k)==c$ $n=n+1$;
end
end
- Vectorized code
function $n=$ charCount(s, c)
\% Report \# of c's in string s
$n=\operatorname{sum}(c==s)$;

Pre-allocating Arrays

- Recall the iterative version of the pair-sum example function $s=$ pairSum(v)
\% Return vector v's pair sums
$s=[] ;$
for $k=1$: length $(v)-1$
$s(k)=v(k)+v(k+1) ;$
end
- Vector s grows as needed
- This works fine in Matlab, but..
- It's slow
- It will run faster if we preallocate the array s
function $s=\operatorname{pairSum}(v)$
\% Return vector v's pair sums
$s=$ zeros(length $(v)-1$);
for $k=1$: length $(v)-1$
$s(k)=v(k)+v(k+1) ;$
end
- Note though that vectorized code is even faster!

Improving Efficiency

- For efficiency
- Use vectorized code if possible
- If you must use a loop, pre-allocate any arrays
- We can write a program to test these ideas
- Matlab provides built-in functions "tic" (start timer) and "toc" (report time elapsed since tic)

Example: Polynomial Evaluation

function $p=$ polyEval(coeff, x)
\% Evaluate polynomial at x; coeff is vector of coefficients.
$\%$ coeff(1) is the constant term.
\% Original code
$p=0$;
for $k=1$:length(coeff)
$p=p+\operatorname{coeff}(k)^{\star} x^{\wedge}(k-1) ;$
end
\% Vectorized replacement code
$d=$ length(coeff) $-1 ; \quad$ \% Degree of polynomial
$p=\operatorname{sum}($ coeff .* (x .^ (O:d)))

Which will produce a vector of perfect squares up to 100 ?

1. $(1: 10) . \wedge 2$
2. $(1: 10)$.* $(1: 10)$
$\Rightarrow 3$. Both of the above

Which will produce the vector of even numbers between 1 and 101?

1. 1:2:101
2. $2: 2: 101$
3. 2:2:100
4. 2 .* $(1: 50)$
5. $(1: 50)$.* 2
6. All of the above
$\Rightarrow 7$. All of 1 thru 5 except 1
7. All of 1 thru 5 except 3
8. All of 1 thru 5 except 5

What does this code do?
$c=\operatorname{floor}(\operatorname{sqrt}(\mathrm{v})) . \wedge 2 \quad \% \mathrm{v}$ is a vector

1. Nothing; there is an error
2. c is the number perfect squares in vector v
3. Each number in v is converted into a nearby
perfect square

What does this code do?
$c=\operatorname{sum}(\bmod (v, 2)==0) \quad \% v$ is a vector

1. Nothing: there is an error
2. c is the number of even
numbers in vector v
3. c is the number of odd numbers in vector v

Which of the following will not produce a 3 -by-3 matrix of 3's?

1. 3 .* ones $(3,3)$
2. $2+$ ones $(3,3)$
3. zeros $(3,3)+3$
4. [3 3 3; 33 3; 3 3 3]
5. $z=\operatorname{ones}(3,3) ; z(:, i)=3$
6. None of the above; they all work

Min of a Neighborhood

- Goal:

Write a function minInNeighborhood(M, row, col) that reports the minimum value in neighborhood of cell(row, col) in matrix M

- Function header

Function val $=\min I n N e i g h b o r h o o d(M$, row, col) \% Return min in neighborhood of (row, col) in M

Neighborhood of a Cell

- We define the neighborhood of a cell to be the cell itself and all adjacent cells (including diagonally adjacent)

Ask Yourself Questions

- Do we know how to solve a similar problem?
- Yes, we already have code to find the min of a matrix
- Can we make a neighborhood into a matrix?
- Yes, Matlab makes it easy to do submatrices
- Neighborhood of M(row, col) is M(row-1:row+1, col-1:col+1)
- What happens near the edges?
" Doesn't work near the edges: we "fall off"
- What can we do to fix up the edges?
- We can make the code more complicated, or...
- We can modify the matrix so we can't fall off
- If we add a border around M, what goes in the border?
- realmax

