

Lecture 10 (Feb 23) CS100M - Spring 2006

Announcements

- Prelim 1
- Tonight at 7:30pm
- Room assignments
- Last names starting with A-L: Uris Auditorium
- Last names starting with M-R: Goldwin Smith Lewis
- Last names starting with S-Z: Goldwin Smith HEC
- This information is also on the website
- Follow the links to Exams and to Prelim I

Characters
\& Strings

Topics

- Reading: CFile 5, Section 5.2
- Recall
- Matlab vectors (1D arrays)
- Vector indices ("subscripts")
- Creating vectors
- [], ":" notation, special functions, appending, combining
- Plans for today
- Characters \& strings
- More examples using Matlab vectors
- Use of plot()

Matlab Strings

- We have already made use of strings
- $n=$ input('Next number: ');
- fprintf('The answer is \%d.', answer):
- 'Next number: ' and 'The answer is \%d.' are both strings
- A string is made up of individual characters
- The string 'CS100M rules' consists of 12 characters (8 letters, 3 digits, and 1 space)
- In Matlab, a string is a vector of characters
- Since a string is a vector, it uses the same indexing scheme as any other vector

Single Quotes

- Anything enclosed in single quotes is a string (even if it looks like something else)
- '100' is a string (i.e., a character vector) of length 3
- 100 is a numeric value
- 'pi' is a string of length 2
- pi is predefined constant (= $3.14159 \ldots$...)
- ' x ' is a character (also a string of length 1)
- x is a variable name

Strings as Vectors

Vectors

- Indexing
$v=[705$];
$x=v(3)$; $\% x$ is 5
$v(1)=1 ; \quad \% v$ is $\left[\begin{array}{lll}1 & 0 & 5\end{array}\right]$
- ":" notation
$v=2: 5 ; \quad \%$ is $\left[\begin{array}{llll}2 & 3 & 4 & 5\end{array}\right]$
- Appending
$v=\left[\begin{array}{ll}7 & 0\end{array}\right]$;
$v(4)=2 ; \quad \% v$ is $\left[\begin{array}{llll}7 & 0 & 5 & 2\end{array}\right]$
- Concatenation
$v=[v[46]]$

$$
\% v \text { is }[705246]
$$

Strings

- Indexing
$s=$ 'hello';
$c=s(2) ; \quad \% c$ is ' e '
$s(1)=$ ' J '; \% s is 'Jello'
- ":" notation
$s=$ ' a ' : ' g '; \% s is 'abcdefg'
- Appending
$s=$ 'duck';
$s(5)=$ ' s '; \% s is 'ducks'
- Concatenation
$s=\left[\begin{array}{c}\text { s } \\ \% \\ \% \\ s \text { is } \\ \text { 'duck' }\end{array}\right]$
$\% s$ is 'ducks quack'

Some Useful String Functions

str = 'CS100M rules';

```
isletter(str) %[110001011111]
isspace(str) % [000000100000]
s= lower(str); % s is 'cs100m rules'
s = upper(str); %s is 'CS100M RULES'
ischar(str); % Is str a char array? 1 (= true)
```


Example: Capitalize First Letters

- Goal:
- Write a function to capitalize just the first letter of each word in a string
- Assume the string consists entirely of letters and spaces
- Function header
function result = capitalize(str)
\% Post: Convert string so each word has just first letter capitalized
\% Pre: Input string consists entirely of letters \& spaces
Post = What is supposed to have happened when function is done (i.e., what the function does)
Pre $=$ What assumptions are being made when function starts

ASCII

(American Standard Code for Information Interchange)
ASCII Code Character ASCII Code Character

48	'0'	97	' ${ }^{\prime}$ '
49	'1'	98	'b'
50	'2'	99	'c'
51	'3'
...	...	122	'z'
65	' A^{\prime}
66	'B'	127	DEL
67	${ }^{\prime} C^{\prime}$		
...	...		
90	'Z'		

Characters \leftrightarrow ASCII Code

str = 'CS100M';	\% Vector (1D array) of characters
code = double(str);	\% Converts each character to a number; \% code is a standard Matlab vector
$s=$ char(code);	\% Converts a vector of numbers into \% a string (i.e., a vector of characters)

Character Arithmetic

- You can do "math" with characters

' d ' - ' a '	\% Produces 3
'9' - ' 8 '	\% Produces 1
' a < 'd'	\% Produces 1 (= true)
' d < ' b '	\% Produces 0 (= false)
' Z < ' b '	\% Produces 1 (= true)
	\% Because 90, the ASCII code for ' Z ',
	\% is less than 98, the ASCII code for ' b '
	\% Produces 99
' a ' + 2	\% Produces ' c '

Example: toUpper

- Goal: Write toUpper(), our own version of Matlab's upper() a function to convert a string to all uppercase
- We want to do this without using Matlab's function upper()
- Function header
function str $=$ toUpper(str)
\% Post: Convert string so all letters are upper case
\% Pre: Input is a string
- Idea: Note that ' a ' - ' A ' has the same value as
' b ' - ' B ' which has the same value as ' c ' - ' C ', etc.
- All we have to do is subtract the right number from a lowercase letter and we'll have the equivalent uppercase letter

Drawing in Matlab

$x=\left[\begin{array}{lll}0 & 3 & 6\end{array}\right] ;$
$y=\left[\begin{array}{lll}0 & 5 & 1\end{array}\right] ;$
plot($x, y,{ }^{\text {' }}$-or'):

- This code will plot the points $(0,0),(3,5)$, and $(6,1)$
- '-or' indicates
- '-': Connect with lines

- 'o': Mark points with circles
- 'r': Use red
- Use help plot to see other options

Multiple Graphs

- Plot will take any number of arguments grouped in threes (x-values, y-values, format-info)
- You can actually leave out the format-info (default formatting is used)
- Example: Suppose a, b, c, and d are vectors; plot(a, b, '-', c, d, '*g') will draw 2 graphs
- a vs. b as a line
- c vs. d as individual points marked by green stars
- length(a) must equal length(b)
- length(c) must equal length(d)

Even Better Drawings

- You can add titles and labels to your drawings
title('Your Fabulous Title')
xlabel ('Name of x-axis')
ylabel('Name of y-axis')
- If you type help plot in the Command Window, there are links to these and other useful drawingrelated functions

Drawing a Circle

- Note that cosine (or sine) of a vector produces a vector
function makeCircle(n)
\% Make circle using n segments angles $=0: 2^{\star} \mathrm{pi} / n: 2^{\star} \mathrm{pi}$;
$x=\cos$ (angles);
$y=\sin$ (angles);
plot($x, y,{ }^{\prime}-g^{\prime}$);
axis equal

Example: Random Walk

- Write a function randomWalk(n) to perform n steps of a random walk in the plane starting from $(0,0)$
- Function header: function randomWalk(n)
- At each step, possible moves are up, down, left, or right
- Display the walk
- This part turns out to be easy
- plot $(x, y$, '-') where x and y are vectors draws connecting lines from $(x(0), y(0))$ to $(x(1), y(1))$ to $(x(2), y(2))$ to...

Random Walk Algorithm

- To do the drawing, we need all the steps stored in two vectors: x and y
- For n steps we need vectors of length $n+1$
- E.g., if we use vectors of length 2, we can hold
- The starting position $(0,0)$
- And one step to either $(1,0),(0,1),(-1,0)$, or ($0,-1$)
- Pseudocode

Load x and y with $n+1$ zeros for each step k Choose a random direction Update $x(k+1)$ and $y(k+1)$
Draw the result

