User-Defined
Functions

Lecture 7 (Feb 14)
CS100M - Spring 2006

18 Functions!

Announcements

* Prelim 1 Conflicts
= Our exam: 2/23 at 7:30pm
= There are several conflicts with other exams
* You must contact Kelly Patwell (see website) if you have
any scheduling difficulties due to other exams
+ Inparticular, if you are taking the BIOG110 makeup that
ends at 7:30 you must contact Kelly Patwell so that you can
be assigned to a different exam room to minimize
disruptions
* Sign out a clicker from the Engineering Library
= Register it online:
http://instructl.cit.cornell.edu:8000/clickers/cs100m.php

* For this week, section is back in the lab

Topics
* Reading: CFile Chapter 4

* Recall last week
= Matlab iteration
¢ For-loop
¢ While-loop

* Plans for this week
= User-defined functions

Functions
* There are lots of functions ¢ Matlab is designed so that a
that are built-in to Matlab user can add new user-

= General math: defined functions

max, min, abs
* Trigonometry: * Goals for how a user-

sin, cos, fan, asin, acos, defined function should

atan

) behave

= Exponential:

exp, log, log2, log10 = Should have input

Integer computation: * Should have output

round, floor, ceil, fix, mod = Should be able to use a
function without clobbering
user’s variables

= Should be able to use it

just like we use a
predefined function

Simple Example Function

* Goal: a function that computes f(x) = x2+4x+4
e Code to do this (stored in an m-file):

function y = £(x)
% Compute f(x) = x*2 + 4*x + 4
y = x"2 + 4%x + 4;

* Using this function (at the Command Window)

>> £(3)
ans = 25
>> £(0)
ans = 4
>> £(4)

ans = 36

General Form for a User-Defined Function

function outputArg = functionName(argl, arg2, ..)

% One line comment describing the function

% Additional description of function

<executable code which at some point assigns to outputArg>

* argl, arg2, .. are defined when the function's code begins
execution
= These input variables (called function parameters) hold the
function arguments used when the function was called
* outputArg does not have a value until something is assigned to
it




Scripts vs.

* The programs you have been
using until now have all been
scripts

A script is executed line-
by-line just as if you are
typing it into the Command

Functions

* A function has its own
private workspace (for its
variables) that does not
interact with the Command
Window workspace

= Variables are not shared
between workspaces even
if they have the same name

Script vs. Function Example

* Suppose we have the following two m-files (i.e., files with .m

suffix)

% g(x) = x*2 + 4*x + 4
y = x*2 + 4*x + 4;

function y = f£(x)
% £(x) = x"2 + 4*x + 4
y = x*2 + 4*x + 4;

Window
= A change to a variable
within the script is a
change to the variable in
the Command Window
workspace

* We can do "the same stuff" with both, but the script is more
cumbersome

>> x = 10; >> z = £(10);
>> g;
>z =y;

* For the script, anything that used to be stored in x ory is
now gone

A Function Example

* Goal: Choose a uniform-random nhumber between L
and U
* Recall: We needed several random humbers
between 1 and 9 for Project 1
= We used: n =1+ 8%rand(1);

* We can make this into a function:

function number = myRand (L, U)

% myRand(L,U) is a random number between L and U
number = L + (U-L)*rand(1l);

* This is used as: n = myRand(1, 9);

Why Use Functions?

* Functions keep driver programs clean by keeping
coding details in separate, non-interacting files

* Functions can be independently tested

* Functions provide a useful /eve/ of abstraction,
allowing one to easily re-use code

= E.g., you don't need to know the details of how sqrt or sin
are implemented

To Execute y = myFunction(x)

* Matlab looks for an m-file that matches the
function name

* Arguments are copredinto the function's local
parameters

= This copying is called pass-by-value; other programming
languages use other argument-passing schemes

* The function’s code is executed using the

function's own private workspace

* The function's workspace is deleted
= Except for the output-value which, in this example, is
assigned toy
= If a function is called again, it starts with a new, empty
workspace

Comments in Functions

* Some comments in a function are freated specially
= The block of comments after the function statement is
printed whenever a user types help functionName at
the Command Window
= The first line of this comment block is searched
whenever a user types lookfor someWord at the
Command Window

* Every function should have a comment block (after
the function statement)
= with a first line that succinctly describes what the
function does
= and, if necessary, additional lines that describe how one
uses the function




What's Printed?

a = 3; function y = myF (x)
b = myF(a); t = 2*x;
fprintf('%d’, b); y=1+¢t;
Output:
7

What's Printed?

a = 3; function y = myF (x)
b = myF(a); t = 2*x;
fprintf('%d’, b); y=1+¢t;

fprintf('%d’, t);

Output:
7

ERROR: t IS UNDEFINED

What's Printed?

a=3; function y = myF (x)
b = myF(a); t = 2*%x;
fprintf ('%d’, b); y=1+¢t;

fprintf('%d\n’, t);

Output:
6
7

What's Printed?

a=3; function y = myF (x)
t = myF(a); t = 2*%x;
fprintf(‘'sd’, t); y=1+t;

fprintf ('%d\n’, t);

Output:
6
7

What's Printed?

t = 3; function y = myF (x)
b = myF(t); t = 2*%x;
fprintf('%d’, t); y=1+t;

Output:

3

What's Printed?

x = 3; function y = myF (x)
b = myF(x); X = 2*%x;
fprintf ('%d’, x); y =1+ x;
Output:
3




For-Loop Question

* What is printed by the following code?
for k = 1:4
fprintf (' %d’, k);

k=7;
fprintf (' %d’, k);
end

* Possible answers
17
17273747
something else

Leaving a For-Loop Early

* If you find that you need fo a leave a Matlab for-
loop before all the index values have been used
* Then you should be using a while-loop instead of a for-
loop
= Matlab does provide a way to break out of a for-loop (it
uses the keyword break), but you are discouraged from
using this in CS100M




