
1

User-Defined
Functions

Lecture 7 (Feb 14)
CS100M – Spring 2006

18 Functions!

Announcements

Prelim 1 Conflicts
Our exam: 2/23 at 7:30pm
There are several conflicts with other exams
You must contact Kelly Patwell (see website) if you have
any scheduling difficulties due to other exams

In particular, if you are taking the BIOG110 makeup that
ends at 7:30 you must contact Kelly Patwell so that you can
be assigned to a different exam room to minimize
disruptions

Sign out a clicker from the Engineering Library
Register it online:
http://instruct1.cit.cornell.edu:8000/clickers/cs100m.php

For this week, section is back in the lab

Topics

Reading: CFile Chapter 4

Recall last week
Matlab iteration

For-loop
While-loop

Plans for this week
User-defined functions

Functions
There are lots of functions
that are built-in to Matlab

General math:
max, min, abs
Trigonometry:
sin, cos, tan, asin, acos,
atan
Exponential:
exp, log, log2, log10
Integer computation:
round, floor, ceil, fix, mod

Matlab is designed so that a
user can add new user-
defined functions

Goals for how a user-
defined function should
behave

Should have input
Should have output
Should be able to use a
function without clobbering
user’s variables
Should be able to use it
just like we use a
predefined function

Simple Example Function

Goal: a function that computes f(x) = x2+4x+4
Code to do this (stored in an m-file):

function y = f(x)
% Compute f(x) = x^2 + 4*x + 4
y = x^2 + 4*x + 4;

Using this function (at the Command Window)
>> f(3)
ans = 25
>> f(0)
ans = 4
>> f(4)
ans = 36

General Form for a User-Defined Function

function outputArg = functionName(arg1, arg2, …)
% One line comment describing the function
% Additional description of function
<executable code which at some point assigns to outputArg>
…

arg1, arg2, … are defined when the function’s code begins
execution

These input variables (called function parameters) hold the
function arguments used when the function was called

outputArg does not have a value until something is assigned to
it

2

Scripts vs. Functions
The programs you have been
using until now have all been
scripts

A script is executed line-
by-line just as if you are
typing it into the Command
Window

A change to a variable
within the script is a
change to the variable in
the Command Window
workspace

A function has its own
private workspace (for its
variables) that does not
interact with the Command
Window workspace

Variables are not shared
between workspaces even
if they have the same name

Script vs. Function Example
Suppose we have the following two m-files (i.e., files with .m
suffix)

function y = f(x)
% g(x) = x^2 + 4*x + 4 % f(x) = x^2 + 4*x + 4
y = x^2 + 4*x + 4; y = x^2 + 4*x + 4;

We can do “the same stuff” with both, but the script is more
cumbersome

>> x = 10; >> z = f(10);
>> g;
>> z = y;

For the script, anything that used to be stored in x or y is
now gone

A Function Example

Goal: Choose a uniform-random number between L
and U
Recall: We needed several random numbers
between 1 and 9 for Project 1

We used: n = 1 + 8*rand(1);

We can make this into a function:
function number = myRand(L, U)
% myRand(L,U) is a random number between L and U
number = L + (U-L)*rand(1);

This is used as: n = myRand(1, 9);

Why Use Functions?

Functions keep driver programs clean by keeping
coding details in separate, non-interacting files

Functions can be independently tested

Functions provide a useful level of abstraction,
allowing one to easily re-use code

E.g., you don’t need to know the details of how sqrt or sin
are implemented

To Execute y = myFunction(x)

Matlab looks for an m-file that matches the
function name
Arguments are copied into the function’s local
parameters

This copying is called pass-by-value; other programming
languages use other argument-passing schemes

The function’s code is executed using the
function’s own private workspace
The function’s workspace is deleted

Except for the output-value which, in this example, is
assigned to y
If a function is called again, it starts with a new, empty
workspace

Comments in Functions

Some comments in a function are treated specially
The block of comments after the function statement is
printed whenever a user types help functionName at
the Command Window
The first line of this comment block is searched
whenever a user types lookfor someWord at the
Command Window

Every function should have a comment block (after
the function statement)

with a first line that succinctly describes what the
function does
and, if necessary, additional lines that describe how one
uses the function

3

What’s Printed?
a = 3;
b = myF(a);
fprintf(‘%d’, b);

function y = myF(x)
t = 2*x;
y = 1 + t;

Output:
7

What’s Printed?
a = 3;
b = myF(a);
fprintf(‘%d’, b);
fprintf(‘%d’, t);

function y = myF(x)
t = 2*x;
y = 1 + t;

Output:
7

ERROR: t IS UNDEFINED

What’s Printed?
a = 3;
b = myF(a);
fprintf(‘%d’, b);

function y = myF(x)
t = 2*x;
y = 1 + t;
fprintf(‘%d\n’, t);

Output:
6
7

What’s Printed?
a = 3;
t = myF(a);
fprintf(‘%d’, t);

function y = myF(x)
t = 2*x;
y = 1 + t;
fprintf(‘%d\n’, t);

Output:
6
7

What’s Printed?
t = 3;
b = myF(t);
fprintf(‘%d’, t);

function y = myF(x)
t = 2*x;
y = 1 + t;

Output:
3

What’s Printed?
x = 3;
b = myF(x);
fprintf(‘%d’, x);

function y = myF(x)
x = 2*x;
y = 1 + x;

Output:
3

4

For-Loop Question

What is printed by the following code?
for k = 1:4
fprintf(‘ %d’, k);
k = 7;
fprintf(‘ %d’, k);

end

Possible answers
1 7
1 7 2 7 3 7 4 7
something else

Leaving a For-Loop Early

If you find that you need to a leave a Matlab for-
loop before all the index values have been used

Then you should be using a while-loop instead of a for-
loop
Matlab does provide a way to break out of a for-loop (it
uses the keyword break), but you are discouraged from
using this in CS100M

