
1

Iteration

Lecture 5 (Feb 7)
CS100M – Spring 2006

Announcements

Project 2
Due Thursday, Feb 16
Online since Friday

For this week, section will be in the classroom 
instead of the lab

Topics

Reading: CFile Chapter 2 
Be sure you understand Section 2.2 on floating point 
numbers

Recall
If-else-end construct
Logical operators & Boolean expressions

Plans for today
Constructs for iteration

For loop
While loop

Goal
Create a Matlab program to 
“throw darts” at a simple 
target

We use random numbers to 
determine where each dart 
lands
We can use this as a way to 
approximate π

Strategy
First, we figure out a 
program to “throw” one 
dart
Then we modify it to throw 
many darts (say, 1000)

Algorithm Outline for One “Throw”

Compute position of dart

If within unit circle

Draw a “hit”

Otherwise

Draw a “miss”

Code Development for One Throw
Compute position of dart

If within unit circle

Draw a “hit”

Otherwise

Draw a “miss”

px = 2*rand - 1;
py = 2*rand - 1;

if (px^2 + py^2 <= 1)

plot(px, py, 'og');

else

plot(px, py, 'or');



2

Final Code for One Throw
close all
hold on
axis('equal');
axis([-1 1 -1 1]);

px = 2*rand - 1;
py = 2*rand - 1;
if (px^2 + py^2 <= 1)

plot(px, py, 'og');
else

plot(px, py, 'or');
end

Throwing Many Darts

We can get an 
approximation of pi if we do 
many trials

How do we create lots of 
trials?

One (not very efficient) 
method:

px = 2*rand - 1;
py = 2*rand - 1;
if (px^2 + py^2 <= 1)

plot(px, py, 'og');
else

plot(px, py, 'or');
end
px = 2*rand - 1;
py = 2*rand - 1;
if (px^2 + py^2 <= 1)

plot(px, py, 'og');
else

plot(px, py, 'or');
end
px = 2*rand - 1;
py = 2*rand - 1;
if (px^2 + py^2 <= 1)

plot(px, py, 'og');
else

plot(px, py, 'or');
end

Using a For-Loop

For-loop syntax:

count = 2000;
for n = 1:1:count

px = 2*rand - 1;
py = 2*rand - 1;
if (px^2 + py^2 <= 1)

plot(px, py, 'og');
else

plot(px, py, 'or');
end

end

for <index variable> = <lower bound> : <increment> : <upper bound>

Statements to execute (also called loop body)

end

For-Loop Examples
for i = 1:1:4

disp(i)
end

for i = 5:2:11
disp(i)

end

for i = 10:2:17
disp(i)

end

for i = 3:6
disp(i)

end

i takes on the values 1, 2, 3, 4

i takes on the values 5, 7, 9, 11

i takes on the values 10, 12, 14, 16

i takes on the values 3, 4, 5, 6
(because if no increment is specified 
then 1 is assumed)

More For-Loop Examples
You can use negative increments

for i = 10:-1:5 % i takes on the values 10, 9, 8, 7, 6, 5
for i = 0:-2:-5 % i takes on the values 0, -2, -4

You can use non-integers 
for x = 0: 0.5: 2 % x takes on the values 0, 0.5, 1.0, 1.5, 2
for x = 0: pi/3: pi % x takes on the values 0, pi/3, 2pi/3, pi

Note that the upper bound is checked every time, even the 
first time through the loop

for x = 5:1:0 % The loop body will not be executed
for x = 10:1 % The loop body will not be executed
for x = 1:-1:10 % The loop body will not be executed

Another Algorithm Example

Goal: Determine the 
sum of 10 numbers

Algorithm
Initialize sum
Loop 10 times

Get number and 
add to sum

Report sum

sum = 0;
for i = 1:10

n = input(‘Enter a number’);
sum = sum + n;

end
fprintf(‘Sum is %f\n’, sum);



3

Another Kind of Loop
We don’t always know 
exactly which values we’ll 
need

Example: The sum
1 + 1/2 + 1/3 + 1/4 + …
can be made arbitrarily 
large by using enough 
terms
How many terms do we 
need to reach a given 
bound?

Algorithm outline
Determine bound
Initialize sum
Loop as long as sum < bound:

sum = sum + next term
Report number of terms 
used

Matlab (and most other 
languages) provide a while-
loop for this kind of problem

Resulting Code
bound = input('Specify bound: ');
sum = 0;
n = 0;
while sum < bound

n = n + 1;
sum = sum + 1/n;

end
fprintf('Bound %d was exceeded at term %d\n', bound, n);

while-loop syntax:
while <boolean condition>

Statements to execute (also called loop body)

end

Problems

It takes forever to get to any value much greater 
than 20

When n gets large enough, the sum quits changing
This happens because numbers in the computer have 
finite precision
In other words, each number is represented 

Using a certain fixed number of digits (typically 53 binary 
digits) for the mantissa
Using a certain fixed number of digits (typically 11 binary 
digits) for the exponent

6.02 x 1023

mantissa exponent

Floating Point Numbers

Matlab notation for 6.02 x 1023 is 
6.02e23 or
6.02E23 or
6.02e+23 or
6.02E+23

The 6.02 part is called the mantissa
The 23 part is the exponent

Finite Precision

Finite precision implies
There are just finitely many numbers that can be 
represented
There is a largest possible floating-point number

In Matlab, this is called realmax 
(typically, realmax = 1.7977e+308)

There is a smallest possible positive floating-point 
number

In Matlab, this is called realmin 
(typically, realmin = 2.2251e-308)

There is a largest possible integer
In Matlab, this is called intmax
(typically, intmax = 2147483647)

Discovering Mantissa Length
Idea

10n + 1 will be equal to 10n when n is greater than the mantissa length
Algorithm

Test 10 + 1 == 10
Test 102 + 1 == 102

Test 103 + 1 == 103

…
until equality is found

Code
n = 1;
while 10^n + 1 ~= 10^n

fprintf('Mantissa is at least %d decimal digits\n', n);
n = n + 1;

end


