

Topics

- Reading: CFile Chapter 2
- Be sure you understand Section 2.2 on floating point numbers
- Recall
- If-else-end construct
- Logical operators \& Boolean expressions
- Plans for today
- Constructs for iteration
- For loop
-While loop

Announcements

- Project 2
- Due Thursday, Feb 16
- Online since Friday
- For this week, section will be in the classroom instead of the lab inseid of lab

Final Code for One Throw

close all
hold on
axis('equal');
axis([-1 1 -1 1]);
px = 2*rand - 1;
py $=2 *$ rand -1 ;
if ($p x^{\wedge} 2+p y^{\wedge} 2<=1$) plot(px, py, 'og');
else
plot(px, py, 'or');
end

Throwing Many Darts

- We can get an
- One (not very efficient) method:
$\mathrm{px}=2 *$ rand $-1 ;$
$\mathrm{py}=2 *$ rand -1 ;
$\mathrm{py}=2 *$ rand $-1 ;$
if
(pan
if ($\mathrm{px} \mathrm{\wedge}^{2} 2+\mathrm{py}^{\wedge} 2<=1$)

else
${ }^{\text {end }}$ plot(px, py, 'or')
end
$\mathrm{px}=2 *$ rand $-1 ;$
$\mathrm{py}=2 *$ rand $-1 ;$
$\mathrm{py}=2 *$ rand $-1 ;$
if $\left(\mathrm{p} \mathrm{x}^{\wedge} 2+\mathrm{py}^{\wedge} \ll=1\right.$
plot(px, py, 'og')
${ }^{\text {else }}{ }^{\text {plot }}$ (px, py, 'og')
plot(px, py, 'or')
end
$\mathrm{pX}=2 *$ rand -1
$\mathrm{py}=2 *$ rand -1
if $\left(p x^{\wedge} 2+p y^{\wedge} 2<=1\right)$
plot(px, py, 'og')
else
end ${ }^{\text {plot(px, }} \mathrm{py}$, 'or')

Using a For-Loop

$$
\text { count }=2000 ;
$$

for $\mathrm{n}=1: 1$: count
$\mathrm{px}=2 *$ rand -1 ;
py $=2$ *rand -1 ;
if $\left(p x^{\wedge} 2+p y^{\wedge} 2<=1\right)$
plot(px, py, 'og');
else
plot(px, py, 'or');
end
end

For-loop syntax:
for <index variable> $=$ 〈lower bound> : <increment> : <upper bound> Statements to execute (also called loop body)

For-Loop Examples

for $i=1: 1: 4$	- i takes on the values $1,2,3,4$
disp(i)	
end	
for $i=5: 2: 11$	- i takes on the values $5,7,9,11$
disp(i)	
end	
for $i=10: 2: 17$	- i takes on the values $10,12,14,16$
disp(i)	
end	
for $i=3: 6$	- itakes on the values $3,4,5,6$ (because if no increment is specified then 1 is assumed)
end	

More For-Loop Examples

- You can use negative increments
- for $i=10:-1: 5 \quad \%$ i takes on the values $10,9,8,7,6,5$
- for $\mathrm{i}=0$:-2:-5 \% i takes on the values $0,-2,-4$
- You can use non-integers
- for $x=0: 0.5: 2 \% x$ takes on the values $0,0.5,1.0,1.5,2$
- for $x=0$: pi/3: pi $\% x$ takes on the values $0, \mathrm{pi} / 3,2 \mathrm{pi} / 3$, pi
- Note that the upper bound is checked every time, even the first time through the loop
- for $x=5: 1: 0 \quad \%$ The loop body will not be executed
- for $x=10: 1 \quad$ \% The loop body will not be executed
- for $x=1:-1: 10$ \% The loop body will not be executed

Another Algorithm Example

- Goal: Determine the sum of 10 numbers
- Algorithm
- Initialize sum
- Loop 10 times
- Get number and add to sum
- Report sum
sum $=0$;
for $i=1: 10$
$\mathrm{n}=$ input('Enter a number'); sum $=$ sum +n ;
end
fprintf('Sum is \%f\n', sum);

Another Kind of Loop

- We don't always know exactly which values we'll need
- Example: The sum $1+1 / 2+1 / 3+1 / 4+$ can be made arbitrarily large by using enough terms
- How many terms do we need to reach a given bound?
- Algorithm outline
- Determine bound
- Initialize sum
- Loop as long as sum < bound: - sum = sum + next term
- Report number of terms used
- Matlab (and most other languages) provide a whileloop for this kind of problem

Resulting Code

bound = input('Specify bound: ');
sum $=0$;
$\mathrm{n}=0$;
while sum < bound
$\mathrm{n}=\mathrm{n}+1$;
sum $=\operatorname{sum}+1 / n$;
end
fprintf('Bound \%d was exceeded at term \%d\n', bound, n);
while-loop syntax:
while <boolean condition>
Statements to execute (also called loop body)
end

Problems

- It takes forever to get to any value much greater than 20
- When n gets large enough, the sum quits changing
- This happens because numbers in the computer have finite precision
- In other words, each number is represented
- Using a certain fixed number of digits (typically 53 binary digits) for the mantissa
- Using a certain fixed number of digits (typically 11 binary digits) for the exponent 6.02×10^{23}

Finite Precision

- Finite precision implies
- There are just finitely many numbers that can be represented
- There is a largest possible floating-point number
- In Matlab, this is called realmax
(typically, realmax $=1.7977 e+308$)
- There is a smallest possible positive floating-point number
- In Matlab, this is called realmin (typically, realmin $=2.2251 e-308$)
- There is a largest possible integer
- In Matlab, this is called intmax
(typically, intmax $=2147483647$)

Floating Point Numbers

- Matlab notation for 6.02×10^{23} is
- 6.02e23 or
- 6.02E23 or
- $6.02 e+23$ or
- $6.02 \mathrm{E}+23$
- The 6.02 part is called the mantissa
- The 23 part is the exponent

