Nested Branching
&
Logical Operators

Lecture 4 (Feb 2)
CS100M - Spring 2006

Announcements

* Project 2
= Due Thursday, Feb 16
= Should appear online by this weekend

* For this next week, section will be in the classroom
instead of the lab

Topics

* Recall previous lecture

= Used if-else-end construct to find min of two values: q(L)
& q(R) where q is a quadratic polynomial

* Plans for today
= More complicated branching
= Logical operators

Goal

* Create a Matlab program to determine the minimum
value of
q(x)=x2+bx+c
in the interval [L, R]

* We know how to do this using Calculus

= The answer has to be one of q(x.), q(L), or q(R) where x_
is the critical point (where the derivative is zero)

= But we use q(x.) only if xis in [L, R]

Algorithm Outline
* Compute x,
< If x, € [L, R]
= Answer is q(x,)

&5
* Otherwise We e 4ot

;3 oW
= Answer is min of q(L) and q(R)

Algorithm (with More Detail)

* Compute x,

*IfL<x <R
= Answer is q(x.)

* Otherwise
= Compute qL = q(L): compute gR = q(R)
= If gL <qR
+ Answer is gL .
) We have an if-construct
= Otherwise inside another if-construct
+ Answer is qR

Program Fragment

% Determine min value of g(x) = x*2 + b*x + ¢
% in the interval [L, R]
xc = - b/2; % Compute x
if (L <= xc && xc <= R)
minValue = xc*2 + b*xc + c;
else % Compute min of gq(L) and g(R)
gL = L*2 + b*L + c;
gR = R*"2 + b*R + c;
if (gL < gR)
minValue = qL;
else
minValue = gR;
end
end

fprintf ('Min value is %f\n’, minValue)

Things to Note

 An if-construct can appear within a branch just like any other
kind of statement

* Matlab (and most other programming languages) treat
comparison operators as binary operators
= Thus some kinds of standard math notation do not work in a
Matlab program
+ Math: If 1< x < 10 then.
+ Matlab: if (1 < x && x < 10)..

« Indentation helps make the program readable, but Matlab
doesn't enforce indentation rules
= Your projects are graded on both correctness and style
+ Appropriate indentation is necessary to achieve a good style grade
= The Matlab Editor helps with the indentation
+ You can override this, but you shouldn't

Logical And
* How do we check if x. isin [L, R]?

= We check L<x_ and x. <R
= Inour code: (L <= xc && xc <= R)

* Rules for logical and:

X Y xandy
F F F
F T F
T F F
T T T

Logical Or
* Alternately, we could check if x, is outside of [L, R]

* We check x. <L or R< X,
= Inourcode: (xc <= L || R <= xc)

* Rules for logical or:

x y xory
F F F
F T T
T F T
T T T

Logical Operators

* Logical and: &&
* Logical or: [
* Logical not: ~

* Matlab uses O for false and nonzero for true
= Uses 1 for true when Matlab generates it, but will take
any nonzero as true in a logical expression
= Matlab also has predefined logical constants:
+ false (= 0) and true (= 1)

Comparison Operators

* Equal ==
* Not equal ~=
* Less than <
* Greater than >
* Less than or equal <=

* Greater than or equal >=

* Each of these operators produces a boolean result
(i.e., the result is either true or false)

* Note use of == to compare for equality

Some Built-In Functions

* Most standard mathematical « Log, exponential functions
functions are available = exp (exponential)
= When in doubt type = log (natural logarithm)
help functionName = log10 (base-10 logarithm)
in the Command Window |]
X X X = log2 (base-2 logarithm)
. ;rmgonorr:f‘rrlc fUQC(;rlons) » Also, x*p computes xP
using racians, not cegrees * Functions for integer

" sin computation

cos
floor

tan .
ceil

.

asin (inverse sin) « round
acos (inverse cos) . fix
atan (inverse tan) « mod

* A few more: max, min, abs

floor

p = floor(x)

* p is assigned the largest integer less than or equal
to x

floor(-3.5) has the value -4
floor(3.5) has the value 3
floor(5) has the value 5
floor(3.2) has the value 3
floor(3.7) has the value 3

ceil
p = ceil(x)

* p is assigned the smallest integer greater than or
equal to x

ceil(-3.5) has the value -3
ceil(3.5) has the value 4
ceil(5) has the value 5
ceil(3.2) has the value 4
ceil(3.7) has the value 4

round

p = round(x)

* p is assigned the integer that is closest to x
* In case of a tie, use the integer that is farther from O

round(-3.5) has the value -4
round(3.5) has the value 4
round(5) has the value 5
round(3.2) has the value 3
round(3.7) has the value 4

fix
p = fix(x)

* p is assigned the closest integer between O and x
(i.e., round toward 0)

fix(-3.5) has the value -3
fix(3.5) has the value 3
fix(5) has the value 5
fix(3.2) has the value 3
fix(3.7) has the value 3

mod
r=mod(p, q)
* r is assigned the remainder when we divide p by q
mod(5, 2) has the value 1

mod(704, 10) has the value 4
mod(30, 7) has the value 2

Boolean Expression Example

* To test if x is divisible by both 3 and 5

if (mod(x, 3) == 0 && mod(x, 5) == 0)
disp(‘Divisible by both’)

else
disp(‘Not divisible by both’)

end

Another Boolean Expression Example

* To test if integer y represents a Leap Year
* Yeary is a Leap Year if
+ It is divisible by 4
+ Exception: century years are not Leap Years
+ Exception: years divisible by 400 are Leap Years

* Resulting code fragment

if mod(y,400) == 0 || (mod(y,4) == 0 && mod(y,100) ~= 0)
fprintf ('%.0f is a Leap Year\n’, y)
else

fprintf ('%$.0f is not a Leap Year\n’, y)

end

Creating a Program

State problem

‘{ Define inputs & outputs

Design algorithm

Convert algorithm to program

Test & debug

* An algorithm is an /idea
* To use an algorithm you must choose a programming language
and /mplement the algorithm

Revisiting the Min-Finding Program

% Determine min value of q(x) = x*2 + b*x + ¢

% in the interval [L, R]

xc = - b/2; % Compute x_

if (L <= xc && xc <= R)
minValue = xc?2 + b*xc + c;

else % Compute min of q(L) and g(R)
minValue = min(L*2 + b*L + ¢, R*2 + b*R + c);

end

fprintf ('‘Min value is %$£f\n’, minvValue)

Playing with Comparisons
* Suppose x has the value 5

= What is the result of typing
x < 10
in the Matlab Command Window?

= What is the result of typing
6 < x
in the Matlab Command Window?

