

Lecture 4 (Feb 2) CS100M - Spring 2006

- Recall previous lecture
- Used if-else-end construct to find min of two values: $q(L)$ \& $q(R)$ where q is a quadratic polynomial
- Plans for today
- More complicated branching
- Logical operators

Logical operars

Announcements

- Project 2
- Due Thursday, Feb 16
- Should appear online by this weekend
- For this next week, section will be in the classroom instead of the lab

Nested Branching \& Logical Operators

Goal

- Create a Matlab program to determine the minimum value of

$$
q(x)=x^{2}+b x+c
$$

in the interval $[L, R]$

- We know how to do this using Calculus
- The answer has to be one of $q\left(x_{c}\right), q(L)$, or $q(R)$ where x_{c} is the critical point (where the derivative is zero)
- But we use $q\left(x_{c}\right)$ only if x_{c} is in [L, R]

Algorithm Outline

- Compute X_{c}
- If $x_{c} \in[L, R]$
- Answer is $q\left(x_{c}\right)$
- Otherwise
- Answer is min of $q(L)$ and $q(R)$

Algorithm (with More Detail)

- Compute X_{c}
- If $L \leq x_{c} \leq R$
- Answer is $q\left(x_{c}\right)$
- Otherwise
- Compute $q L=q(L)$; compute $q R=q(R)$
- If qL < qR
- Answer is qL We have an if-construct
- Otherwise $\left.\begin{array}{c}\text { - Answer is } \mathrm{qR}\end{array}\right\}$ inside another if-construct

Program Fragment

```
\(\%\) Determine min value of \(q(x)=x^{\wedge} 2+b * x+c\)
\% in the interval [L, R]
\(\mathrm{xc}=-\mathrm{b} / 2 ; \quad\) \% Compute \(\mathrm{x}_{\mathrm{c}}\)
if ( \(L<=x c \& \& x c<=R\) )
    minValue \(=x^{\wedge}{ }^{\wedge} 2+b * x c+c ;\)
else \(\quad\) \% Compute min of \(q(L)\) and \(q(R)\)
    \(q L=L^{\wedge} 2+b \star L+c ;\)
    \(q R=R^{\wedge} 2+b * R+c\);
    if ( qL < qR )
        minvalue \(=q\);
    else
        minvalue \(=q R\);
    end
end
fprintf('Min value is \%f\n', minValue)
```


Things to Note

- An if-construct can appear within a branch just like any other kind of statement
- Matlab (and most other programming languages) treat comparison operators as binary operators
- Thus some kinds of standard math notation do not work in a Matlab program
- Math: If $1<x<10$ then...
- Matlab: if $(1<x \& \& x<10)$...
- Indentation helps make the program readable, but Matlab doesn't enforce indentation rules
- Your projects are graded on both correctness and style
- Appropriate indentation is necessary to achieve a good style grade
- The Matlab Editor helps with the indentation
- You can override this, but you shouldn't

Logical And

- How do we check if x_{c} is in $[L, R]$?
- We check $L \leq x_{c}$ and $x_{c} \leq R$
- In our code: ($L<=x c \& \& x c<=R$)
- Rules for logical and:

x	y	x and y
F	F	F
F	T	F
T	F	F
T	T	T

Logical Operators

- Logical and: \&\&
- Logical or: ||
- Logical not: ~
- Matlab uses 0 for false and nonzero for true
- Uses 1 for true when Matlab generates it, but will take any nonzero as true in a logical expression
- Matlab also has predefined logical constants:
- false ($=0$) and true ($=1$)

Logical Or

- Alternately, we could check if x_{c} is outside of [L, R]
- We check $x_{c} \leq L$ or $R \leq x_{c}$
- In our code: ($\mathrm{xc}<=\mathrm{L} \| \mathrm{R}<=\mathrm{xc}$)
- Rules for logical or:

x	y	x or y
F	F	F
F	T	T
T	F	T
T	T	T

Comparison Operators

- Equal	$==$
- Not equal	$\sim=$
- Less than	$<$
- Greater than	$>$
- Less than or equal	$<=$
- Greater than or equal	$>=$

- Each of these operators produces a boolean result (i.e., the result is either true or false)
- Note use of $==$ to compare for equality

Some Built-In Functions

- Most standard mathematical functions are available
- Log, exponential functions
- When in doubt type
help functionName
in the Command Window
- Trigonometric functions (using radians, not degrees)
- \sin
- \exp (exponential)
- \log (natural logarithm)
- $\log 10$ (base-10 logarithm)
- log2 (base-2 logarithm)
- Also, $x^{\wedge} p$ computes x^{p}
- cos

Functions for integer
computation

- floor
- tan
- ceil
- asin (inverse sin)
- round
- fix
- mod
- A few more: max, min, abs

floor

$p=$ floor (x)

- p is assigned the largest integer less than or equal to x
floor(-3.5) has the value -4
floor(3.5) has the value 3
floor(5) has the value 5
floor(3.2) has the value 3
floor(3.7) has the value 3

ceil

$p=\operatorname{ceil}(x)$

- p is assigned the smallest integer greater than or equal to x
ceil(-3.5) has the value - 3
ceil(3.5) has the value 4
ceil(5) has the value 5
ceil(3.2) has the value 4
ceil(3.7) has the value 4

round

$p=\operatorname{round}(x)$

- p is assigned the integer that is closest to x
- In case of a tie, use the integer that is farther from 0
round(-3.5) has the value -4
round(3.5) has the value 4
round(5) has the value 5
round(3.2) has the value 3
round(3.7) has the value 4

fix

$p=f i x(x)$

- p is assigned the closest integer between 0 and x (i.e., round toward 0)
fix(-3.5) has the value -3
fix(3.5) has the value 3
fix(5) has the value 5
fix(3.2) has the value 3
fix(3.7) has the value 3

\bmod

$r=\bmod (p, q)$

- r is assigned the remainder when we divide p by q
$\bmod (5,2)$ has the value 1 $\bmod (704,10)$ has the value 4 $\bmod (30,7)$ has the value 2

Boolean Expression Example

- To test if x is divisible by both 3 and 5
if $(\bmod (x, 3)==0 \& \& \bmod (x, 5)==0)$
disp('Divisible by both')
else
disp('Not divisible by both')
end

Playing with Comparisons

- Suppose \times has the value 5
- What is the result of typing

$$
x<10
$$

in the Matlab Command Window?

- What is the result of typing

$$
6<x
$$

in the Matlab Command Window?

- What is the result of typing
$6<x<10$
in the Matlab Command Window?

Another Boolean Expression Example

- To test if integer y represents a Leap Year
- Year y is a Leap Year if
- It is divisible by 4
- Exception: century years are not Leap Years
- Exception: years divisible by 400 are Leap Years
- Resulting code fragment
if $\bmod (y, 400)=0 \|(\bmod (y, 4)==0 \& \& \bmod (y, 100) \sim=0)$ fprintf('\%.Of is a Leap Year $\left.\backslash n^{\prime}, y\right)$
else
fprintf('\%.0f is not a Leap Year $\left.\backslash \mathrm{n}^{\prime}, \mathrm{y}\right)$
end

Revisiting the Min-Finding Program

```
% Determine min value of q(x) = x^2 + b*x + c
% in the interval [L, R]
xc = - b/2; % Compute }\mp@subsup{\textrm{x}}{\textrm{c}}{
if (L <= xc && xc <= R)
    minValue = xc^2 + b*xc + c;
else % Compute min of q(L) and q(R)
    minValue = min(L^2 + b*L + c, R^2 + b*R + c);
end
fprintf('Min value is %f\n', minValue)
```

fprintf('Min value is $\% f \backslash n^{\prime}$, minValue)

