

Nested Branching Logical Operators

Lecture 4 (Feb 2) CS100M - Spring 2006

Announcements

- Project 2
 - Due Thursday, Feb 16
 - Should appear online by this weekend
- For this next week, section will be in the classroom instead of the lab

Topics

- Recall previous lecture
 - Used if-else-end construct to find min of two values: q(L) & q(R) where q is a quadratic polynomial
- Plans for today
 - More complicated branching
 - Logical operators

Goal

• Create a Matlab program to determine the minimum value of

$$q(x) = x^2 + bx + c$$
 in the interval [L, R]

- We know how to do this using Calculus
 - The answer has to be one of $q(x_c)$, q(L), or q(R) where x_c is the critical point (where the derivative is zero)

Algorithm (with More Detail)

• But we use $q(x_c)$ only if x_c is in [L, R]

Algorithm Outline

- Compute x_c
- If $x_c \in [L, R]$
 - Answer is $q(x_c)$
- Otherwise
- Answer is min of q(L) and q(R)We already know to do this how to do this

• Compute x_c

- If $L \le x_c \le R$
 - Answer is $q(x_c)$
- Otherwise
 - Compute qL = q(L); compute qR = q(R)
 - If qL < qR
 - · Answer is qL
 - Otherwise
 - Answer is qR
- We have an if-construct

Program Fragment

Things to Note

- An if-construct can appear within a branch just like any other kind of statement
- Matlab (and most other programming languages) treat comparison operators as *binary* operators
 - Thus some kinds of standard math notation do not work in a Matlab program
 - Math: If 1 < x < 10 then...
 - Matlab: if (1 < x && x < 10)...
- Indentation helps make the program readable, but Matlab doesn't enforce indentation rules
 - Your projects are graded on both correctness and style
 - Appropriate indentation is necessary to achieve a good style grade
 - The Matlab Editor helps with the indentation
 - You can override this, but you shouldn't

Logical And

- How do we check if x_c is in [L, R]?
 - We check $L \le x_c$ and $x_c \le R$
 - In our code: (L <= xc && xc <= R)
- Rules for logical and:

×	У	× <u>and</u> y
F	F	F
F	Т	F
Т	F	F
Т	Т	Т

Logical Or

- Alternately, we could check if x_c is outside of [L, R]
 - We check $x_c \le L$ or $R \le x_c$
 - In our code: (xc <= L || R <= xc)</p>
- Rules for logical or:

×	У	х <u>or</u> у
F	F	F
F	Т	Т
Т	F	Т
Т	Т	Т

Logical Operators

- Logical and: &8
 Logical or: ||
 Logical not: ~
- Matlab uses 0 for false and nonzero for true
 - Uses 1 for true when Matlab generates it, but will take any nonzero as true in a logical expression
 - Matlab also has predefined logical constants:
 - false (= 0) and true (= 1)

Comparison Operators

- Equal
 Not equal
 Less than
 Greater than
- Less than or equal <=Greater than or equal >=
- Each of these operators produces a boolean result (i.e., the result is either true or false)
- Note use of == to compare for equality

Some Built-In Functions

- Most standard mathematical Log, exponential functions functions are available
 - When in doubt type help functionN in the Command Window
- Trigonometric functions (using radians, not degrees)
 - sin
 - cos
 - tan
 - asin (inverse sin)
 - acos (inverse cos)
 - atan (inverse tan)

- - exp (exponential)
 - log (natural logarithm)
 - log10 (base-10 logarithm)
 - log2 (base-2 logarithm) Also, x^p computes x^p
- Functions for integer computation
 - floor
 - ceil

 - round
 - fix mod
- A few more: max, min, abs

floor

p = floor(x)

• p is assigned the largest integer less than or equal

floor(-3.5) has the value -4 floor(3.5) has the value 3 floor(5) has the value 5 floor(3.2) has the value 3 floor(3.7) has the value 3

ceil

p = ceil(x)

• p is assigned the smallest integer greater than or equal to x

ceil(-3.5) has the value -3 ceil(3.5) has the value 4 ceil(5) has the value 5 ceil(3.2) has the value 4 ceil(3.7) has the value 4

round

p = round(x)

ullet p is assigned the integer that is closest to x• In case of a tie, use the integer that is farther from 0

round(-3.5) has the value -4 round(3.5) has the value 4 round(5) has the value 5 round(3.2) has the value 3 round(3.7) has the value 4

fix

p = fix(x)

ullet p is assigned the closest integer between 0 and x(i.e., round toward 0)

fix(-3.5) has the value -3 fix(3.5) has the value 3 fix(5) has the value 5 fix(3.2) has the value 3 fix(3.7) has the value 3

mod

r = mod(p, q)

• r is assigned the remainder when we divide p by q

mod(5, 2) has the value 1 mod(704, 10) has the value 4 mod(30, 7) has the value 2

Boolean Expression Example

• To test if x is divisible by both 3 and 5

```
if (mod(x, 3) == 0 && mod(x, 5) == 0)
   disp('Divisible by both')
else
   disp('Not divisible by both')
end
```

Another Boolean Expression Example

- To test if integer y represents a Leap Year
 - Year y is a Leap Year if
 - It is divisible by 4
 - Exception: century years are not Leap Years
 - Exception: years divisible by 400 are Leap Years
- Resulting code fragment

```
if mod(y,400) == 0 || ( mod(y,4) == 0 && mod(y,100) ~= 0 )
    fprintf('%.0f is a Leap Year\n', y)
else
    fprintf('%.0f is not a Leap Year\n', y)
end
```

Creating a Program

- An algorithm is an idea
- To use an algorithm you must choose a programming language and implement the algorithm

Revisiting the Min-Finding Program

Playing with Comparisons

- Suppose x has the value 5
 - What is the result of typing
 x < 10
 in the Matlab Command Window?
 - What is the result of typing 6 < x

in the Matlab Command Window?

What is the result of typing
 6 < x < 10
 in the Matlab Command Window?