Topics：Max \＆min，branching
Reading：CFile 1 Sec 1.3

Max \＆Min

Consider the quadratic function $q(x)=x^{2}+b x+c$ on the interval $[L, R]$ ：
Q_{1} ：Which is smaller，$q(L)$ or $q(R)$ ？
Q_{2} ：What is the minimum value of $q(x)$ in $[L, R]$ ？

```
% Fragment 1
    qL= L^2 + b*L + c; % q(L)
    qR= R^2 + b*R + c; % q(R)
```

 --ーーー-ー-ー-ー---------
 fprintf('qL less than \(q R \backslash n ')\);
 fprintf('qR less than or equal to \(q L \backslash n ')\);

Relational Operators

Operator	Meaning
$>$	greater than
$>=$	greater than or equal to
$==$	equal to
$\sim=$	not equal to
$<=$	less than or equal to
$<$	less than

```
% Fragment 2
    qL= L^2 + b*L + c; % q(L)
    qR= R^2 + b*R + c; % q(R)
    if (
        disp('qL equals qR');
    ---------------------
        disp('qL less than qR');
    else
        fprintf('qR less than or equal to qL');
    end
```

Consider the quadratic function $q(x)=x^{2}+b x+c$ on the interval $[L, R]$ ．What if you only want to know if $q(L)$ is close to $q(R)$ ？

```
% Fragment 3
    tol= 1e-9; % tolerance
    qL= L^2 + b*L + c; % q(L)
    qR= R^2 + b*R + c; % q(R)
    if ( abs(qL-qR) < tol )
        disp('qL is close to qR');
    end
```


Simple if construct

if Condition

Statements to execute if the condition is true else

Statements to execute if the condition is false end

The even simpler if construct

if Condition
Statements to execute if the condition is true end

The if construct

if Condition 1
Statements to execute if the condition 1 is true elseif Condition 2

Statements to execute if the condition 2 is true \vdots
else
Statements to execute if all previous conditions are false end

Rules of the if construct

-
 else clause

- \qquad elseif clauses

Consider the quadratic function $q(x)=x^{2}+b x+c$ on the interval $[L, R]$.
What are the critical points?
What do we do with the critical points in order to find the minimum value of $q(x)$ in $[L, R]$?

