
Chapter 9

The Second Dimension

§9.1 Rows and Columns
2-dimensional arrays—matrix, functions that involve matrices, colon notation for

submatrices, built-in function size

§9.2 Operations
Searching a 2-dimensional array and updating its values, built-in functions rand

and sprintf, subfunctions

§9.3 Tables in Two Dimensions
Using 2-dimensional arrays to represent a function of two variables.

As we have said before, the ability to think at the array level is very important in com-
putational science. This is challenging enough when the arrays involved are linear, i.e., one-
dimensional. Now we consider the two-dimensional array using this chapter to set the stage for
more involved applications that use this structure. Two-dimensional array thinking is essential
in application areas that involve image processing. (A digitized picture is a 2-dimensional ar-
ray.) Moreover, many 3-dimensional problems are solved by solving a sequence of 2-dimensional,
“cross-section” problems.

We start by considering some array set-up computations in §9.1. The idea is to develop an
intuition about the parts of a 2-dimensional array: its rows, its columns, and its subarrays.

Once an array is set up, it can be searched and its entries manipulated. Things are not
too different from the 1-dimensional array setting, but we get additional row/column practice in
§9.2 by considering a look-for-the-max problem and also a mean/standard deviation calculation
typical in data analysis. Computations that involve both 1- and 2-dimensional arrays at the same
time are explored through a cost/purchase order/inventory application. Using a 2-dimensional
array to store a finite snapshot of a 2-dimensional continuous function f(x, y) is examined in §9.3.

9.1 Rows and Columns

If f(x) is a function of a single variable, then a vector can be used to represent a table of its
values. Until now, we have only dealt with 1-dimensional arrays. A single subscript is sufficient
to specify the location of a value in a 1-dimensional array.

331

332 Chapter 9. The Second Dimension

Many applications involve a function of two variables and a 2-dimensional array is often handy
for the representation of its values. In Matlab, a 2-dimensional array is called a matrix. Our
experience with 2-dimensional tables begins in grade school with the times table:

1 2 3 4 5 6 7 8 9
2 4 6 8 10 12 14 16 18
3 6 9 12 15 18 21 24 27
4 8 12 16 20 24 28 32 36
5 10 15 20 25 30 35 40 45
6 12 18 24 30 36 42 48 54
7 14 21 28 35 42 49 56 63
8 16 24 32 40 48 56 64 72
9 18 27 36 45 54 63 72 81

Times table construction is shown in Example9 1 which illustrates the creation of a matrix and
the printing of a submatrix. The integers r1 and r2 define the range of the involved rows while
c1 and c2 specify the column range. Extending our colon notation in the obvious way, we see
that Example9 1 displays the 4-by-6 subarray T(6:9,5:10).

There are many things to discuss. We create a matrix T where each individual component
has the value one with the statements

rowMax= 12;

colMax= 10;

T= ones(rowMax,colMax);

The result is a 12-row, 10-column array called T that looks like this:

T =

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

A double subscript notation is used to indicate any location in the array. A fragment of the form

T(1,1)= 1*1;

T(1,2)= 1*2;

〈:〉
T(1,10)= 1*10;

sets up the first row of T:

9.1. Rows and Columns 333

% Example 9 1: Times table

rowMax= 12; % No. of rows in table

colMax= 10; % No. of columns in table

T= ones(rowMax,colMax); % Initialize times table to 1s

% Compute the times table

for r= 1:rowMax

% Calculate and fill the r-th row

for c= 1:colMax

T(r,c)= r*c;

end

end

% Print user-specified submatrix

anotherEg= ’y’;

while (anotherEg ∼= ’n’)

c1= input(sprintf(’Enter c1, lower bound in x range. 1<=c1<=%d. ’,colMax));

c2= input(sprintf(’Enter c2, upper bound in x range. 1<=c2<=%d. ’,colMax));

r1= input(sprintf(’Enter r1, lower bound in y range. 1<=r1<=%d. ’,rowMax));

r2= input(sprintf(’Enter r2, upper bound in y range. 1<=r2<=%d. ’,rowMax));

% Print T(r1:r2,c1:c2)

for r= r1:r2

% Print T(r,c1:c2)

for c= c1:c2

fprintf(’%4d’, T(r,c))

end

fprintf(’\n’) % Start new line

end

anotherEg= input(’Another example? Enter y (yes) or n (no): ’, ’s’);

end

Sample output:

Enter c1, lower bound in x range. 1<=c1<=10. 5
Enter c2, upper bound in x range. 1<=c2<=10. 10
Enter r1, lower bound in y range. 1<=r1<=12. 6
Enter r2, upper bound in y range. 1<=r2<=12. 9
30 36 42 48 54 60

35 42 49 56 63 70

40 48 56 64 72 80

45 54 63 72 81 90

Another example? Enter y (yes) or n (no).

n

334 Chapter 9. The Second Dimension

T =

1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

In general, a reference to an entry in a 2-dimensional array has the form

〈Name〉(〈row index〉,〈column index〉)

Successful subscript-level “thinking” in 2-dimensions requires being able to keep track of both
the row and column indices. Remember that the row index comes first. In Example9 1, the array
T is filled row-by-row. The inner loop in the top portion of the program establishes the r-th row
of the table. If r=2, then

for c= 1:colmax

T(r,c)= r*c;

end

is equivalent to

T(2,1)= 2*1;

T(2,2)= 2*2;

〈:〉
T(2,10)= 2*10;

and the array T now looks like

T =

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

9.1. Rows and Columns 335

Double loops abound in matrix settings and the mastery of the subscript concept is essential.
Here is what T looks like upon completion of the double loop:

T =

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100
11 22 33 44 55 66 77 88 99 110
12 24 36 48 60 72 84 96 108 120

If we reverse the order of the r and c loop, then T is filled column by column. Thus, after two
passes through the outer loop

for c= 1:colmax

{Calculate and fill the c-th column}
for r= 1:rowmax

T(r,c)= r*c;

end
end

we have

T =

1 2 1 1 1 1 1 1 1 1
2 4 1 1 1 1 1 1 1 1
3 6 1 1 1 1 1 1 1 1
4 8 1 1 1 1 1 1 1 1
5 10 1 1 1 1 1 1 1 1
6 12 1 1 1 1 1 1 1 1
7 14 1 1 1 1 1 1 1 1
8 16 1 1 1 1 1 1 1 1
9 18 1 1 1 1 1 1 1 1
10 20 1 1 1 1 1 1 1 1
11 22 1 1 1 1 1 1 1 1
12 24 1 1 1 1 1 1 1 1

We also mention that it is legal to create the matrix “on-the-fly,” or build it one row at a time,
without first initializing the matrix to a certain size using function ones. Suppose we now wish
to create a 3-by-4 times table. Consider the fragment

336 Chapter 9. The Second Dimension

for r= 1:3

% Calculate the r-th row

for c= 1:4

T(r,c)= r*c;

end
end

Note that we have not used any function to first create a 3-by-4 matrix. In the first pass through
the outer loop where r=1, we create a 1-by-4 matrix

T = 1 2 3 4

In the second pass through the outer loop, r=2 so we create the submatrix T(2,1:4), without

affecting the submatrix T(1,1:4) already built during the first pass of the outer loop. The result
is a 2-by-4 matrix

T =
1 2 3 4
2 4 6 8

In the final pass through the outer loop, r=3 so we create the submatrix T(3,1:4), resulting in
the final 3-by-4 matrix

T =
1 2 3 4
2 4 6 8
3 6 9 12

We have used the colon notation to denote submatrices several times. This colon notation
can be used in Matlab as well to specify a submatrix. Suppose T is the 3-by-4 matrix we have
created above. The statement

subT1= T(2:3,2:4)

gives

subT1 =
4 6 8
6 9 12

Furthermore, Matlab has a shortcut expression for specifying “all rows” or “all columns.”
Say we want to retrieve the first two columns of T and call the new matrix subT2. Then we can
write subT2= T(1:3,1:2) or use the shortcut

9.1. Rows and Columns 337

subT2= T(:,2:4)

Instead of specifying “rows 1 through 3,” we simply say “all rows” by using the colon to replace

the row range 1:3.

Let us now define a function showMatrix to print out the values in a matrix:

function showMatrix(m)

% Post: Print all values in matrix m.

% Each value is printed to 1 decimal place.

% Pre: m is numeric and each value < 100000. (For larger values, the

% printed columns won’t line up, but the values will be correct.

[nr,nc]= size(m);

for r= 1:nr

for c= 1:nc

fprintf(’%8.1f’, m(r,c))

end

fprintf(’\n’)
end

Note the use of the built-in function size. Given the a matrix as the input argument,
function size returns two values: the number of rows and the the number columns, in that order,
of the matrix. Although function showMatrix prints the values in the entire matrix specified
by the input parameter, you can use showMatrix to print a submatrix simply by specifying a
submatrix in the function call. Example9 2 does the same thing as Example9 1 except that it
uses showMatrix to print the user-specified part of the times table.

In Example9 1 and Example9 2, we could have created and printed only the specified range
of the times table without first creating the 12-by-10 times table. In fact, we can create any
contiguous portion of the times table “on-the-fly” because the value in each cell can be calculated
independent of the values in any other cell. For example, the fragment

% print lines 6 to 9 and columns 5 to 10 of times table

for i= 6:9

for j= 5:10

subT(i-5,j-4)= i*j;

end
end
showMatrix(subT);

will print only lines 6 to 9 and columns 5 to 10 of the times table, like in Example9 1 and
Example9 2. Analyze the subscripts carefully. For each entry of matrix subT, the two numbers
multiplied are not the row and column numbers of subT. The first line of the times table of
interest is 6, but it corresponds to row 1 of the submatrix, therefore an “offset” of 5 needs to be
subtracted from multiplier 6 in order to store the value in a cell in row 1. Similarly, the column
subscript has to be adjusted by an offset of 4.

Sometimes the entries in a matrix are defined in terms of other entries. As an example of
such a recursive specification, consider the following definition of the n-by-n Pascal array, whose

338 Chapter 9. The Second Dimension

% Example 9 2: Times table

rowMax= 12; % No. of rows in table

colMax= 10; % No. of columns in table

T= ones(rowMax,colMax); % Initialize times table to 1s

% Compute the times table

for r= 1:rowMax

% Calculate and fill the r-th row

for c= 1:colMax

T(r,c)= r*c;

end

end

% Print user-specified submatrix

anotherEg= ’y’;

while (anotherEg ∼= ’n’)

c1= input(sprintf(’Enter c1, lower bound in x range. 1<=c1<=%d. ’,colMax));

c2= input(sprintf(’Enter c2, upper bound in x range. 1<=c2<=%d. ’,colMax));

r1= input(sprintf(’Enter r1, lower bound in y range. 1<=r1<=%d. ’,rowMax));

r2= input(sprintf(’Enter r2, upper bound in y range. 1<=r2<=%d. ’,rowMax));

% Print T(r1:r2,c1:c2)

showMatrix(T(r1:r2,c1:c2));

anotherEg= input(’Another example? Enter y (yes) or n (no): ’, ’s’);

end

Sample output:

Enter c1, lower bound in x range. 1<=c1<=10. 5
Enter c2, upper bound in x range. 1<=c2<=10. 10
Enter r1, lower bound in y range. 1<=r1<=12. 6
Enter r2, upper bound in y range. 1<=r2<=12. 9
30.0 36.0 42.0 48.0 54.0 60.0

35.0 42.0 49.0 56.0 63.0 70.0

40.0 48.0 56.0 64.0 72.0 80.0

45.0 54.0 63.0 72.0 81.0 90.0

Another example? Enter y (yes) or n (no): n

9.1. Rows and Columns 339

(r, c) entry is defined by

prc =

1 if r = 1 or c = 1

pr,c−1 + pr−1,c otherwise

Thus, the first row and column of the array are made up of ones. Elsewhere, the (r, c) entry is
the sum of the “previous” entry in its row, pr,c−1, and the previous entry in its column, pr−1,c.
Encapsulating this we obtain

function p = pascalMatrix(n)

% Post: p is the pascal matrix with n rows and columns

% Pre: n>1

for r= 1:n

% Set up the r-th row

for c= 1:n

if (r==1 || c==1)

p(r,c)= 1;

else
p(r,c)= p(r,c-1) + p(r-1,c);

end
end

end

We also mention that instead of having a pair of “1-to-n” loops with an or operator, we could
set up matrix p as follows:

for k= 1:n

p(k,1)= 1;

p(1,k)= 1;

end
for r= 2:n

for c= 2:n

p(r,c)= p(r,c-1) + p(r-1,c);

end
end

Here, row 1 and column 1 are established first, and then p(2:n,2:n). Example9 3 illustrates the
use of pascalMatrix.

Problem 9.1. Modify Example9 1 so that it prints row and column “labels” for the user-specified portion of the
times table. For example, if the user-specified range is lines 6 to 8 and columns 5 to 10, then the printed table
should look like this:

5 6 7 8 9 10
6 30 36 42 48 54 60
7 35 42 49 56 63 70
8 40 48 56 64 72 80

340 Chapter 9. The Second Dimension

% Example9 3: Pascal array

n= 6; % Size of problem

M= pascalMatrix(n);

fprintf(’The Pascal array with n = %d\n’, n)

showMatrix(M);

Output:

The Pascal array with n = 6:

1.0 1.0 1.0 1.0 1.0 1.0

1.0 2.0 3.0 4.0 5.0 6.0

1.0 3.0 6.0 10.0 15.0 21.0

1.0 4.0 10.0 20.0 35.0 56.0

1.0 5.0 15.0 35.0 70.0 126.0

1.0 6.0 21.0 56.0 126.0 252.0

Problem 9.2. Complete the following procedure

function [S,C] = sinCosMatrix(n, theta)

% Post: S(i,j) = sin(i*j*theta) and C(i,j) = cos(i*j*theta), 1<=i<=n, 1<=j<=n

% Pre: integer n>=1

Implement the simplest approach which is to call the functions sin and cos for each entry. The number of function
evaluations can be reduced by exploiting the identities

sin(ijθ) = sin((i − 1)jθ) cos(jθ) + cos((i − 1)jθ) sin(jθ)

cos(ijθ) = cos((i − 1)jθ) cos(jθ) − sin((i − 1)jθ) sin(jθ)

In particular, the identities can be used to generate the first row and column of S and C from S(1,1) and C(1,1).
Once the first rows and columns are available, the recursions can be used to generate S(2:n,2:n) and C(2:n,2:n).

Problem 9.3. The (r, c) entry of the n-by-n Pascal array P is also specified by

prc =

min{r,c}
∑

k=1

(

r − 1
k − 1

)(

c − 1
k − 1

)

Write an alternative pascalMatrix1 to the function pascalMatrix that returns the n-by-n Pascal array using this
recipe. Make use of the fact that prc = pcr. Do not use Matlab’s built-in function pascal!

Problem 9.4. A magic square of size n is an n-by-n array with the following properties:

• It is “made up” of the integers 1, 2, . . . , n2.

• The numbers in every row, column, and diagonal sum to n(n2 + 1)/2. (There are two diagonals, one from
the upper left corner to the lower right corner, and one from the lower left corner to the upper right corner.)

Here are the magic squares of size 3, 5, and 7:

9.2. Operations 341

2 7 6
9 5 1
4 3 8

9 3 22 16 15
2 21 20 14 8
25 19 13 7 1
18 12 6 5 24
11 10 4 23 17

20 12 4 45 37 29 28
11 3 44 36 35 27 19
2 43 42 34 26 18 10
49 41 33 25 17 9 1
40 32 24 16 8 7 48
31 23 15 14 6 47 39
22 21 13 5 46 38 30

Pick up the pattern and complete the following function:

function M= magicSqr(n)

% Post: M is an n-by-n magic square}
% Pre: n is odd}

Do not use Matlab’s built-in function magic! For checking purposes, implement the following boolean-valued
function:

function result = isMagic(M)

% Post: {M is a magic square}, true or false

% Pre: n is odd

Problem 9.5. Complete the following function:

function vm = vanderMonde(x)

% Post: vm(i,j) = x(i)ˆ(j-1), 1<=i<=length(x), 1<=j<=length(x)

% Pre: x is real vector

Do not use Matlab’s built-in function vander.

Problem 9.6. Complete the following function:

function T = toeplitz(d)

% Post: T(i,j) = d(|i-j|), 1<=i<=length(x), 1<=j<=length(x)

% Pre: d is real vector

Do not use Matlab’s built-in function toeplitz.

9.2 Operations

Searching for a maximum or minimum value in a matrix is very similar to searching a vector.
The only difference is that a nested loop is required, one for stepping through the columns and
one for the rows. Here’s a function that computes the row and column index of the maximum
entry:

function [rmax, cmax]= indexOfMax(M)

% Post: M(rmax,cmax) is the largest entry in M. If maximum value

% occurs in multiple places, identify the first one.

% Pre: M is at least 1-by-1

342 Chapter 9. The Second Dimension

rmax= 1;

cmax= 1;

maxSoFar= M(1,1);

for r= 1:size(M,1)

% Scan the r-th row

for c= 1:size(M,2)

if M(r,c)>maxSoFar

% A new max has been found

maxSoFar= M(r,c);

rmax= r;

cmax= c;

end
end

end

The search through the array is row-by-row. Within each row, the array entries are checked left
to right. Any time a new largest value is encountered, its row and column indices are stored in
rmax and cmax respectively. Example9 4 illustrates the use of the procedure. Notice the use of

% Example 9 4: Maximum entry in matrix

m= 4; n= 6; % m-by-n problem

lBound= -5; uBound= 5; % lower and upper bounds for array entries

anotherEg= ’y’;

while (anotherEg =’n’)

M= rand(m,n)*(uBound-lBound)+lBound;

showMatrix(M);

[r,c]= indexOfMax(M);

fprintf(’Maximum value %.1f at (%d,%d)\n’, M(r,c), r, c)

anotherEg= input(’Another example? Enter y (yes) or n (no): ’, ’s’);

end

Output:

-3.6 -2.3 -0.5 3.5 3.4 3.3

-3.0 -3.0 4.3 0.3 -4.8 0.0

-3.0 -4.8 -0.3 -3.0 1.8 2.1

1.0 2.5 -0.8 1.7 -1.2 -0.7

Maximum value 4.3 at (2,3)

Another example? Enter y (yes) or n (no): n

built-in function rand to create a matrix of random real values, each within the interval of (0,1).
The two arguments in the function call to rand specify the number of rows and columns, in that
order, of random numbers to be generated.

9.2. Operations 343

Problem 9.7. Complete the following function:

function rmax = maxByCol(M)

% Post: rmax(c) is the row index of the largest entry in column c

% Pre: M is at least 1-by-1

Problem 9.8. We say that M(i,j) is a saddle point of the matrix M if it is at least as large as any other entry in
its row and no bigger than any other entry in its column. Complete the functions

function rowNum = minInCol(M,c)

% Post: rowNum is the index (row number) of the smallest entry in M(:,c)

% Pre: M(:,c) has length>1

function colNum = maxInRow(M,r)

% Post: colNum is the index (column number) of the largest entry in M(r,:)

% Pre: M(r,:) has length>1

and use them to implement the following function:

function [isSaddle,row,col] = isSaddlePt(M)

% Post: If there is a saddle point, then isSaddle=1 and M(row,col) is a saddle point.

% Otherwise isSaddle=0 and row=col=[].

% Pre: M is at least 2-by-2

Problem 9.9. Suppose we want to find the thickest “border” around a cell M(r,c) such that the entries in the
border are no larger than the value in M(r,c). The thickness of the border is the number of cells to the left, right,
top, and bottom of M(r,c). For example, the border with a thickness of 3 around the cell M(7,25) refers to the
submatrix M(4:10,22:28) (but excludes the center cell M(7,25)). Function ringOK checks that the ring of cells
d cells from M(r,c) have entries that are no larger than M(r,c). Function findBorder finds the thickness of the
thickest border around M(r,c) such that the entries in the border are no larger than M(r,c). Complete the two
functions below. Use function ringOK in implementing function findBorder. Note that the maximum thickness
may be zero.

function ok = ringOK(M,r,c,d)

% Post: ok=1 if M(r,c) is at least as large as the cells in

% M(r-d,c-d:c+d), M(r+d,c-d:c+d), M(r-d:r+d,c-d), M(r-d:r+d,c+d).

% Pre: For matrix M of dimension nr-by-nc, 2<r<=nr and 2<c<=nc,

% and 0<=d<=min(r-1,nr-r,c-1,nc-c).

function width = findBorder(M,r,c)

% Post: width = maximum thickness of the border around M(r,c) such

% that the entries in the border are no larger than M(r,c)

% Pre: For matrix M of dimension nr-by-nc, 2<r<=nr and 2<c<=nc

A broad family of 2-dimensional array operations amount to a sequence of 1-dimensional array
operations in which the same calculations are performed on each column (or row). For example,
a common enterprise in data analysis is to “normalize” the values in a 1-dimensional array by
their mean µ and standard deviation σ. Thus, if

x = 10 40 20 30 ,

344 Chapter 9. The Second Dimension

then µ = 25, σ =
√

((10 − 25)2 + (40 − 25)2 + (20 − 25)2 + (30 − 25)2)/4 = 5
√

5. Let z be the
normalization of x, then

z(i) =
x(i) − µ

σ

where i is the subscript (or index) of x. Therefore,

z = −3/
√

5 3/
√

5 −1/
√

5 1/
√

5 .

The following fragment performs this task for an array x with length n:

% Compute the mean

mu= 0;

for i= 1:n

mu= mu + x(i);

end
mu= mu/n;

% Compute the standard deviation

sigma= 0;

for i= 1:n

sigma= sigma + (x(i)-mu)ˆ2;
end
sigma= sqrt(sigma/n);

% Normalize

for i= 1:n

z(i)= (x(i)-mu)/sigma;

end

It is easy to check that z has zero mean and unit standard deviation, hence the term “normalize.”
Here is a function that normalizes each of the columns in an array M:

function N= normalizeCols(M)

% Post: Each column of N is the normalization of the corresponding column in M

% Pre: M is at least 1-by-1

[nr,nc]= size(M);

for c= 1:nc

% Normalize the c-th column

% Compute the mean

mu= 0;

for r= 1:nr

mu= mu + M(r,c);

end
mu= mu/nr;

% Compute the standard deviation

sigma= 0;

for r= 1:nr

sigma= sigma + (M(r,c)-mu)ˆ2;
end
sigma= sqrt(sigma/nr);

9.2. Operations 345

% Normalize

for r= 1:nr

N(r,c)= (M(r,c)-mu)/sigma;

end
end

See Example9 5.

% Example 9 5: Normalizing data

% Define constants

lBound= 0;

uBound= 10;

nr= 6; nc = 4;

anotherEg= ’y’;

while (anotherEg ∼= ’n’)

% nr-by-nc matrix where each entry is random in (lBound..uBound)

M = rand(nr,nc)*(uBound-lBound) + lBound;

fprintf(’Original matrix: \n’);
showMatrix(M);

fprintf(’Normalized matrix: \n’);
showMatrix(normalizeCols(M));

anotherEg= input(’Another example? Enter y (yes) or n (no): ’, ’s’);

end

Sample output:

Original matrix:

9.5 4.6 9.2 4.1

2.3 0.2 7.4 8.9

6.1 8.2 1.8 0.6

4.9 4.4 4.1 3.5

8.9 6.2 9.4 8.1

7.6 7.9 9.2 0.1

Normalized matrix:

1.2 -0.3 0.8 -0.0

-1.7 -1.9 0.2 1.4

-0.2 1.1 -1.7 -1.1

-0.7 -0.3 -0.9 -0.2

1.0 0.3 0.9 1.2

0.4 1.0 0.8 -1.2

346 Chapter 9. The Second Dimension

Problem 9.10. Complete the following function for smoothing data in a matrix:

function S = smooth(M)

% Post: S is the smoothed data from matrix M.

% For nr-by-nc M and S, S(i,j) = M(i,j) if i=1 or i=nr or j=1 or j=nc.

% Otherwise, S(i,j) is the average of M(i-1,j),M(i+1,j),M(i,j-1),M(i,j+1).

% Pre: M is at least 1-by-1

Computations that involve 1- and 2-dimensional arrays “at the same time” arise in numerous
applications. Consider a situation where a company has m factories, each of which can produce
any of n products. An m × n matrix cost can be used to store cost-of-production information,
the value of cost(f,p) being the cost to factory f for producing one unit of product p. Here is
a sample cost matrix:

cost =
10 32 21 73 5
12 27 25 67 6
9 30 26 73 4

Thus, Factory 2 can produce product 4 at a cost of $67 per unit.

A customer wishes to purchase a certain number of each product. A vector d can be used to
represent this demand, e.g.,

d = 100 50 80 10 30

We wish to determine the factory that can fill the purchase order most cheaply. Note that the
cost to factory f is a summation that involves numbers from the f -th row of cost multiplied by
the corresponding numbers from dq:

Cost to Factory 1 = 10 · 100 + 32 · 50 + 21 · 80 + 73 · 10 + 5 · 30 = 5160
Cost to Factory 2 = 12 · 100 + 27 · 50 + 25 · 80 + 67 · 10 + 6 · 30 = 5400
Cost to Factory 3 = 9 · 100 + 30 · 50 + 26 · 80 + 73 · 10 + 4 · 30 = 5330

In terms of the arrays, the three production costs are given by

C1= cost(1,1)*d(1) + cost(1,2)*d(2) + cost(1,3)*d(3) + cost(1,4)*d(4) + cost(1,5)*d(5)

C2= cost(2,1)*d(1) + cost(2,2)*d(2) + cost(2,3)*d(3) + cost(2,4)*d(4) + cost(2,5)*d(5)

C3= cost(3,1)*d(1) + cost(3,2)*d(2) + cost(3,3)*d(3) + cost(3,4)*d(4) + cost(3,5)*d(5)

Picking up the pattern and letting np be the number of products, we see that the fragment

total= 0;

for p= 1:np

total= total + cost(f,p)*d(p);

end

assigns to total the f -th factory’s cost of production. Our goal is to determine which factory
(the value of f) has the smallest possible cost. We can write the following function cheapest:

9.2. Operations 347

function [fMinCost, minCost] = cheapest(cost, d)

% Post: minCost = the minimum cost of all factories to satisfay demand d.

% fMinCost = the factory number that has minCost.

% Pre: For a cost matrix that is nf-by-np, demand d is a vector of length np.

[nf,np]= size(cost);

minCost= realmax; % min cost initialized to a large number

for f= 1:nf

% Calculate cost of factory f

total= 0; % total cost factory f, initialized to 0

for p= 1:np

total= total + cost(f,p)*d(p);

end

if (total<minCost)

minCost= total;

fMinCost= f;

end
end

Some interesting boolean computations arise with the introduction of an “inventory array.”
Assume that inventory is initialized with the understanding that inventory(f,p) contains the
number of units of product p on hand at factory f . Factory f can therefore process the purchase
order if inventory(f,p)>=d(p) for p = 1 to np. Thus if

inventory =

150 200 100 120 110
200 40 130 20 40
300 50 100 12 80

and

d = 100 50 80 10 30

then factories 1 and 3 have sufficient inventory but factory 2 does not.

Example9 6 contains a set of functions for experimenting with different cost-demand-inventory
scenarios. The program prompts the user to enter a vector representing the purchase order,
computes the costs, and determines whether the factories have sufficient inventory to fill the order.
The function eg9 6 is the “driver” and invokes functions allcosts, fCanDo, and printIntArray.
Function allcosts calculates the costs of all the factories to fill the user specified purchase order.
Function fCanDo evaluates whether factory f has sufficient inventory to fill the purchase order.
Function printIntArray prints a matrix that contains integer values.

In the function eg9 6, the variable prompt stores a string that is created using concatenation
and the built-in function sprintf. Function sprintf is used in the same way as fprintf to
create a string that may include substituted variable values and special characters (e.g., \n for
a line break). However, sprintf returns a string that can be stored while fprintf, as we have
seen before, only prints the string to the screen.

In previous chapters, we have created scripts and functions that are stored separately—each
under its own file name. A function that is stored under its own name can be used by any script

348 Chapter 9. The Second Dimension

% Example 9 6: Cost, demand, and inventory

function eg9 6()

% Program to display production cost, inventory level

% Define constants

nFact = 4; % no. of factories

nProd = 8; % no. of products

anotherEg = ’y’;

prompt= sprintf(’What is the purchase order for the %d products?’, nProd);

prompt= [prompt sprintf(’\nEnter the %d numbers as a vector: ’,nProd)];

while (anotherEg ∼= ’n’)

cost= floor(rand(nFact,nProd)*10+1); % random costs in (1..10)

inv= floor(rand(nFact,nProd)*900+100); % random inventory in (100..999)

fprintf(’The Cost Array:’)

printIntArray(cost);

purchase= input(prompt);

fprintf(’The Inventory Array:’)

printIntArray(inv);

% Costs for filling the order (vector of length nFact)

purchaseCosts= allCosts(cost, purchase);

% Display results

fprintf(’Factory \t Cost \t Sufficient inventory?\n’);
for f= 1:nFact

if (fCanDo(inv(f,:), purchase))

yesNo= ’yes’;

else

yesNo= ’no’;

end

fprintf(’%4d \t %12d \t\t %s \n’, f, purchaseCosts(f), yesNo);

end

anotherEg= input(’\nAnother cost-inventory scenario (y/n)? ’,’s’);

end

%%%%%%%% Factory costs

function total = allCosts(cost, d)

% Post: total(f) is the cost for factory f to fill demand d

% Pre: For a cost matrix that is nf-by-np, demand vector d has length np

[nf,np]= size(cost);

total= zeros(nf,1);

for f= 1:nf % for factory f

for p= 1:np % for product p

total(f)= total(f) + cost(f,p)*d(p);

end

end

Example 9 6 continues on next page

9.2. Operations 349

Example 9 6 continued

%%%%%%%% Check inventory of factory f

function canDo = fCanDo(v, d)

% Post: canDo=1 if v(p)>=d(p) for all p, p=1:length(v)=length(d).

% Otherwise canDo=0.

% Pre: Inventory v and demand d are vectors of the same length

canDo= 1; % sufficient inventory so far, initialized to true.

p= 1; % product number

while (p<=length(v) && canDo)

canDo= v(p)>=d(p);

p= p+1;

end

%%%%%%%% Print integer array

function printIntArray(A)

% Post: Print the integer values in array A

% Pre: A contains integer values and is at least 1-by-1

fprintf(’\n’);
[nr,nc]= size(A);

for r= 1:nr

for c= 1:nc

fprintf(’%6d ’, A(r,c));

end

fprintf(’\n’);
end

Sample output:

The Cost Array:

1 4 8 2 9 1 1 4

10 2 5 6 9 9 4 9

2 9 4 7 7 2 9 5

4 4 6 1 5 5 9 6

What is the purchase order for the 8 products?

Enter the 8 numbers as a vector: [10 30 200 20 10 400 10 40]
The Inventory Array:

654 559 970 217 112 353 930 195

695 742 839 328 605 158 605 100

654 563 385 822 509 528 687 587

716 645 628 701 914 985 795 106

Factory Cost Sufficient inventory?

1 2430 no

2 5370 no

3 2390 yes

4 3760 yes

Another cost-inventory scenario (y/n)? n

350 Chapter 9. The Second Dimension

or function in the current directory or on the search path. In Example 9 6, we write the four
functions in the same file because they are specific to one particular problem and, except for
printIntArray, are unlikely to be used by other programs. When there are multiple functions
in a file, each has a function header as usual but no other “separators” are necessary. The
first function is called the main or top function and any functions below the main function are
called subfunctions. The subfunctions in a file can be accessed by the main function only but
the subfunctions may call one another. The file name is the name of the main function with the
extension .m.

Problem 9.11. Complete the following:

function value = totalValue(cost, inv)

% Post: value(f) = is the total value of factory f’s entire inventory

% Pre: cost, inv are matrices of same size, nf-by-np, so value is a length nf vector

function [fMinCost, minCost] = cheapestPossible(cost, inv, d)

% Post: fminCost = 0 and minCost is negative if none of the factories

% has enough inventory to fill demand d. Otherwise minCost is

% the lowsest cost and fMinCost is the factory number with minCost.

% Pre: cost, inv are matrices of same size, nf-by-np, and demand d is a length np vector

9.3 Tables in Two Dimensions

It is sometimes efficient to pre-compute function values and store them in a table for future
use. Such a table would be a matrix if the function depends on two variables. To illustrate,
consider the problem of finding the triangle with the longest perimeter assuming that the three
vertices are chosen from a given finite point set. See Figure 9.1. Assume that x(1:n) and
y(1:n) contain the coordinates of the points. The most obvious solution is simply to check every
possible triangle:

pmax= 0;

for i= 1:n

for j= 1:n

for k= 1:n

pij= distance(x(i),y(i),x(j),y(j));

pjk= distance(x(j),y(j),x(k),y(k));

pki= distance(x(k),y(k),x(i),y(i));

pijk= pij+pjk+pki;

if (pijk > pmax)

pmax=pijk; imax=i; jmax=j; kmax=k;

end
end

end
end

9.3. Tables in Two Dimensions 351

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Click here to stop or click below red line

Figure 9.1 Maximum Triangle

Here, distance(a,b,c,d) returns
√

(a − c)2 + (b − d)2, the distance between (a, b) and (c, d).
The triply nested loop steps through all the possibilities, but it is redundant. Let the notation
(i, j, k) stand for the triangle obtained by connecting points i, j, and k. Note that the triangles
(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), and (3,2,1) are all the same. This 6-fold repetition can
be avoided by abbreviating the loop ranges as follows:

for i = 1: n

for j = i+1:n

for k= j+1:n

Think of the i-th point as the one selected first, the j-th point as the one selected second, and
the k-th point as the one selected third. A little geometric thinking indicates that the optimum
triangle will involve three distinct vertices, i.e., j is not the same as i and k should not be j or
i. Therefore, the lower bound in an inner loop should be 1 larger than the index value of the
immediate outer loop. Here is an enumeration of all the triangles that are checked in the n = 6
case:

(1, 2, 3) (1, 2, 4) (1, 2, 5) (1, 2, 6)
(1, 3, 4) (1, 3, 5) (1, 3, 6)
(1, 4, 5) (1, 4, 6)
(1, 5, 6)
(2, 3, 4) (2, 3, 5) (2, 3, 6)
(2, 4, 5) (2, 4, 6)
(2, 5, 6)
(3, 4, 5) (3, 4, 6)
(3, 5, 6)
(4, 5, 6)

352 Chapter 9. The Second Dimension

There are four groups corresponding to i=1,2,3, and 4. Across each line we list all the triangles
that involve a particular pair of points, avoiding the mention of triangles that have already been
listed or that do not involve three distinct points.

Despite these modifications, there remains an even bigger redundancy. Each pairwise distance
is computed about n times because each line segment that connects two points participates in
about n triangles. This suggests that we pre-compute all the pairwise distances and store them
in a matrix D. Incorporating this idea and casting the final solution in the form of a function we
obtain:

function [imax, jmax, kmax] = MaxTriangle(x, y)

% Post: imax, jmax, kmax are the 3 vertices of the triangle with the longest

% perimeter: (x(imax),y(imax)), (x(jmax),y(jmax)), (x(kmax),y(kmax)).

% Pre: x, y are vectors of the same length and represent xy coordinates

n= length(x);

% Compute distance matrix between all pairs of points

D = zeros(n, n);

for i = 1:n

for j=i+1:n

D(i,j) = distance(x(i), y(i), x(j), y(j));

end

end

% Find indices of triangle with longest perimeter

pmax = 0; % max perimeter found so far

for i= 1:n-2

for j= i+1:n-1

for k= j+1:n

pijk= D(i,j) + D(j,k) + D(i,k);

if (pijk > pmax)

pmax= pijk; imax= i; jmax= j; kmax= k;

end
end

end
end

Example 9 7 solicits a finite point set and then uses maxTriangle to compute the triangle with
maximum perimeter.

Notice that only the upper triangular portion of the array is used. By setting up and using the
D array, the number of calls to Distance is reduced by a factor of about n. Of course, Distance
is not a particularly expensive function to execute, so this example of “trading space for time”
is not very dramatic. But in other settings, the use of a 2-dimensional array to store function
values can be crucial.

9.3. Tables in Two Dimensions 353

% Example9 7: Maximum triangle

[x, y] = getPoints();

[imax, jmax, kmax] = maxTriangle(x,y);

% Draw triangle on figure opened via getPoints

xTri= [x(imax) x(jmax) x(kmax) x(imax)];

yTri= [y(imax) y(jmax) y(kmax) y(imax)];

plot(xTri,yTri,’-r’)

The function getPoints was defined in Chapter 5. For sample output, see Figure 9.1.

Problem 9.12. Complete the following function exploiting symmetry as much as possible:

function D = gridDist1(n)

% Post: D(i,j) is the distance from (0,0) to (i,j) where i,j=1:n

% Pre: n>=0

Problem 9.13. Complete the following function exploiting symmetry as much as possible:

function D = gridDist2(n)

% Post: D(i,j) is the distance from (0,n) to (i,j) where i,j=1:n

% Pre: n>=0

Problem 9.14. Complete the following function exploiting symmetry as much as possible:

function D = gridDist3(n)

% Post: D(i,j) is the distance from (n/2,n/2) to (i,j) where i,j=1:n

% Pre: n>=0 and is even

