
Chapter 5

Points In The Plane

§5.1 Centroids

One-dimensional arrays—vectors, initializing vectors, colon expression for sub-
vectors, empty array [], functions with vector parameters, functions that return
vectors.

§5.2 Max’s and Min’s

Algorithm for finding the max in a list, function plot and related graphics controls,
function sprintf

All of the programs that we have considered so far involve relatively few variables. The variables
that we have used are scalar variables where only one value is stored in the variable at any time.
We have seen problems that involve a lot of data, but there was never any need to store it “all
at once.” This will now change. Tools will be developed that enable us to store a large amount
of data that can be accessed during program execution. We introduce this new framework by
considering various problems that involve sets of points in the plane. If these points are given by
(x1, y1), . . . , (xn, yn), then we may ask:

• What is their centroid?

• What two points are furthest apart?

• What point is closest to the origin (0,0)?

• What is the smallest rectangle that contains all the points?

The usual input/fprintf methods for input and output are not convenient for problems like
this. The amount of data is too large and too geometric. In this chapter we will be making
extensive use of Matlab’s graphics functions such as plot for drawing an x-y plot, and ginput

for reading in the x and y coordinates of a mouse click in a figure window on the screen. We
postpone the detailed discussion about plot until the end of the chapter so that we can focus
on another important concept in the early examples. For now, do not be concerned about the
commands used to “set up the figure window” in the examples. Brief explanations are given in
the program comments to indicate their effect. Be patient! Function plot will be explained in
§5.2.

259

260 Chapter 5. Points In The Plane

5.1 Centroids

Suppose we are given n points in the plane (x1, y1), . . . , (xn, yn). Collectively, they define a finite
point set. Their centroid (x̄, ȳ) is defined by

x̄ =
1

n

n∑

i=1

xi ȳ =
1

n

n∑

i=1

yi.

See Figure 5.1. Notice that x̄ and ȳ are the averages of the x and y coordinates. The program

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Click 10 points and the centroid will be displayed

Figure 5.1 Ten Points and Their Centroid

Example5 1 calculates the centroid of ten user-specified points to produce Figure 5.1. The
xy values that define ten points are obtained by clicking the mouse. The statement [xk,yk]=

ginput(1) stores the x value of a mouse click in variable xk and the the y value in yk. The
summations that are required for the centroid computation are assembled as the data is acquired.
The ten points are displayed as dots (.) using Matlab’s plot function while the centroid is
displayed as an asterisk (*), again using the plot function. Notice the series of commands near
the top of the script that set up the figure window. We wrote a comment for each command as
a brief explanation to you—you don’t need to write such detailed comments in general.

Now let us augment Example5 1 so that it draws a line from each of the ten points to the
centroid as depicted in Figure 5.2. If we try to do this, then we immediately run into a problem:
the x and y values have not been saved. If the number of points is small, say 3, then we can solve
this problem using existing techniques with a fragment like this:

sx= 0; sy= 0;

[x1,y1]= ginput(1); plot(x1,y1,’.’)

sx= sx+x1; sy= sy+y1;

5.1. Centroids 261

% Example 5 1: Display centroid of 10 user-selected points

n= 10; % Number of points user will click in

% Set up the window

close all % Close all previous figure windows

figure % Start a new figure window

hold on % Keep the same set of axes (multiple plots on same axes)

axis equal % unit lengths on x- and y-axis are equal

axis([0 1 0 1]) % x-axis limits are [0,1], y-axis limits are [0,1]

title([’Click ’ num2str(n) ’ points and the centroid will be displayed’])

% Plot the points

sx= 0; % sum of x values entered so far

sy= 0; % sum of y values entered so far

for k= 1:n

[xk,yk]= ginput(1); % xk = x-position of kth mouse click by user

% yk = y-position of kth mouse click by user

plot(xk, yk, ’.’) % Plot a dot at position(xk,yk)

sx= sx + xk;

sy= sy + yk;

end

% Compute and display the centroid

xbar= sx/n;

ybar= sy/n;

plot(xbar, ybar, ’*’, ’markersize’, 10) % Plot a ’*’ 10 units in size at (xbar,ybar)

For sample output, see Figure 5.1.

[x2,y2]= ginput(1); plot(x2,y2,’.’)

sx= sx+x2; sy= sy+y2;

[x3,y3]= ginput(1); plot(x3,y3,’.’)

sx= sx+x3; sy= sy+y3;

% Calculate and plot centroid

xbar= sx/3; ybar= sy/3;

plot(xbar,ybar,’*’)

% Connect points to centroid

plot([x1 xbar],[y1 ybar]) % Plot a line from (x1,y1) to (xbar,ybar)

plot([x2 xbar],[y2 ybar])

plot([x3 xbar],[y3 ybar])

However, the feasibility of this approach diminishes rapidly as the nubmer of points, n, gets large
because approximately 2n variables have to be declared and approximately 6n statements are
required to carry out the computation.

To solve this problem conveniently, we need the concept of the array. Example5 2 introduces
this all-important construction. The program has two array variables x and y which may be
visualized as follows:

262 Chapter 5. Points In The Plane

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Click 10 points

Figure 5.2 Connecting the Centroid

x
x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) x(10)

y
y(1) y(2) y(3) y(4) y(5) y(6) y(7) y(8) y(9) y(10)

These arrays are each able to store up to 10 real values, one value per array component. We call
these one-dimensional arrays vectors. In Matlab, vectors can be a row or a column. Above, x
and y are pictured as row vectors. The program uses the x and y vectors to store the coordinates
of the points whose centroid is required. To understand Example5 2 fully, we need to discuss how
arrays are created and how their components can participate in the calculations.

The built-in function

zeros(1,n)

creates and returns a vector 1 row by n columns in size (a row vector) where each component

5.1. Centroids 263

% Example 5 2: Connect 10 user-selected points to the centroid

n= 10; % Number of points user will click in

% Set up the window

close all

figure

hold on

axis equal

axis([0 1 0 1])

title([’Click ’ num2str(n) ’ points and the centroid will be displayed’])

% Plot the points

x= zeros(1,n); % x(k) is x value of the kth point, initialized to 0

y= zeros(1,n); % y(k) is y value of the kth point, initialized to 0

sx= 0; % sum of x values entered so far

sy= 0; % sum of y values entered so far

for k= 1:n

[x(k),y(k)]= ginput(1);

plot(xk, yk, ’.’)

sx= sx + xk;

sy= sy + yk;

end

% Compute and display the centroid

xbar= sx/n;

ybar= sy/n;

plot(xbar, ybar, ’*’, ’markersize’, 20)

% Connect the points to the centroid

for k= 1:n

plot([x(k) xbar], [y(k) ybar])

end

For sample output, see Figure 5.2.

is initialized to the value zero. The two arguments of function zero specify the number of rows
and the number of columns in that order. Therefore, the function call to create a column vector
of zeros is zeros(n,1).

The variables x and y are each assigned the returned vector from the zeros function. There-
fore, x and y are vector variables. The individual component in such a vector will store values of
one type, double precision numbers in our example. Each component has an index, or subscript,
identifying its position in the vector. The index is an integer and goes from 1 to the number of
components in the vector, or 10 in this case.

To illustrate how values can be assigned to an array, consider the fragment

x= zeros(1,10); y= zeros(1,10);

x(1)= 3;

y(1)= 4;

264 Chapter 5. Points In The Plane

x(2)= 5;

y(2)= 2;

x(3)= 1;

y(3)= 7;

This results in the following situation:

x
x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) x(10)

3 5 1 0 0 0 0 0 0 0

y
y(1) y(2) y(3) y(4) y(5) y(6) y(7) y(8) y(9) y(10)

4 2 7 0 0 0 0 0 0 0

The key is to recognize that the index is part of the component’s name. For example, x(2) is the
name of a variable that happens to be the second component of the vector x. The assignment
x(2)= 6 is merely the assignment of a value to a variable, as we have seen many times before.

A component of a vector can “show up” any place a simple real variable can “show up.” Thus,
the fragment

sx= 0; sy= 0;

[x(1),y(1)]= ginput(1);

sx= sx + x(1); sy= sy + y(1);

[x(2),y(2)]= ginput(1);

sx= sx + x(2); sy= sy + y(2);

[x(3),y(3)]= ginput(1);

sx= sx + x(3); sy= sy + y(3);

obtains the data for three points and stores the acquired x and y values in x(1), x(2) and x(3)

and y(1), y(2) and y(3) respectively. But what makes arrays so powerful is that array subscripts

can be computed. The preceding fragment is equivalent to

for k= 1:3

[x(k),y(k)]= ginput(1);

sx= sx + x(k);

sy= sy + y(k);

end

When the loop index k has the value of 1, the effective loop body is

[x(1),y(1)]= ginput(1);

5.1. Centroids 265

sx= sx + x(1);

sy= sy + y(1);

This solicits the coordinates of the first point, puts the values in the first component of x and y,
and updates the running sums sx and sy. During the second and third passes through the loop,
k has the values 2 and 3 and we have, effectively,

[x(2),y(2)]= ginput(1);

sx= sx + x(2);

sy= sy + y(2);

and

[x(3),y(3)]= ginput(1);

sx= sx + x(3);

sy= sy + y(3);

In general, array references have the form

〈Vector name〉(〈integer-valued expression〉)

The value enclosed within the parenthesis is the index or subscript and it must be an integer or
an expression that evaluates to an integer. Moreover, the value must be in the subscript range
of the vector. Given a vector, how do you know how many components it has? The function
call length(x) returns the length of, or the number of components in, vector x. In our example
where x has length 10, references like x(0) or x(11) are illegal and would result in program
termination. Reasoning about subscript range violations gets complicated when the subscript
values are the result of genuine expressions. For example, if x has length 10 and i is an integer,
then x(2*i-1) is legal if the value of i is either 1, 2, 3, 4 or 5.

When referring to parts of arrays, it is useful to use Matlab’s “colon expression.” We first
saw the colon expression in Chapter 2 when discussing for-loops. The expression 2:5 reads as
“2 to 5” and refers to the numbers 2, 3, 4, and 5. When dealing with vectors, the Matlab

expression x(2:5) refers to the components x(2), x(3), x(4) and x(5). We refer to x(2:5) as
a subvector of x. The subvector x(i:j) where i > j denotes an empty array.1

In Example5 2 we saw that function zeros returns a vector.2 Similarly, a function can have
vector parameters. For example, the centroid computation can be encapsulated as follows:

function [xbar, ybar] = centroid(x, y)

% Post: (xbar,ybar) is centroid of points (x(k),y(k)), k=1:length(x)

% Pre: 0 < length(x)=length(y)

sx= 0; % sum of x values so far

sy= 0; % sum of y values so far

1The empty array is analogous to the null set or empty set (∅) you have encountered in mathematics.
2Another frequently used function for creating vectors is ones. The function call ones(1,n) returns a row

vector of length n while ones(n,1) returns a column vector of length n.

266 Chapter 5. Points In The Plane

for k= 1:length(x)

% incorporate the k-th point

sx= sx + x(k);

sy= sy + y(k);

end
xbar= sx/length(x);

ybar= sy/length(y);

Example5 3 illustrates the use of this function and is equivalent to Example5 2.

% Example 5 3: Connect 10 user-selected points to the centroid

n= 10; % Number of points user will click in

% Set up the window

close all

figure

hold on

axis equal

axis([0 1 0 1])

title([’Click ’ num2str(n) ’ points and the centroid will be displayed’])

% Plot the points

x= zeros(1,n); % x(k) is x value of the kth point, initialized to 0

y= zeros(1,n); % y(k) is y value of the kth point, initialized to 0

for k= 1:n

[x(k),y(k)]= ginput(1);

plot(xk, yk, ’.’)

end

% Compute and display the centroid

[xbar,ybar]= centroid(x,y);

plot(xbar, ybar, ’*’, ’markersize’, 20)

% Connect the points to the centroid

for k= 1:n

plot([x(k) xbar], [y(k) ybar])

end

For sample output, see Figure 5.2.

Problem 5.1. A line drawn from a vertex of a triangle to the midpoint of the opposite side is called a median.
It can be proven that all three medians intersect at

(x̄, ȳ) = ((x1 + x2 + x3)/3, (y1 + y2 + y3)/3).

where the triangle’s vertices are (x1, y1), (x2, y2), and (x3, y3). The point (x̄, ȳ) is the triangle’s centroid and
corresponds to its “center of mass.” Write a program using arrays that solicits three points and then draws (a)
the triangle that they define, (b) displays the triangle’s centroid, and (c) draws the three medians.

5.1. Centroids 267

Problem 5.2. Rewrite function centroid to take advantage of useful built-in functions such as sum and mean.
(You only need one of these functions.) sum(v) returns the sum of the values in all the components of vector v

while mean(v) returns the mean, or average, of all the values in v.

In the last few examples we used built-in functions to create vectors. We also can “manually”
enter values in a vector. Example5 4 obtains data for two user-selected points and then inserts the
midpoint, calculated using function centroid, into the x and y vectors. The script is essentially

% Example 5 4: Insert the midpoint between 2 user-selected points

n= 2; % Number of points user will click in

% Set up the window

close all

figure

hold on

axis equal

axis([0 1 0 1])

title([’Click ’ num2str(n) ’ points and the centroid will be displayed’])

% Plot the points

x= zeros(1,n); % x(k) is x value of the kth point, initialized to 0

y= zeros(1,n); % y(k) is y value of the kth point, initialized to 0

for k= 1:n

[x(k),y(k)]= ginput(1);

plot(xk, yk, ’.’)

end

% Compute and display the centroid

[xbar,ybar]= centroid(x,y);

plot(xbar, ybar, ’*’, ’markersize’, 20)

% Insert the midpoint in vectors x, y

x= [x(1) xbar x(2)];

y= [y(1) ybar y(2)];

For sample output, see Figure 5.3.

identical to Example5 3 except for the last two statements

x= [x(1) xbar x(2)];

y= [y(1) ybar y(2)];

Here, vectors x and y are assigned new values enclosed in square brackets. The expression
[x(1) xbar x(2)] creates a vector with three values—the values in x(1), xbar, and x(2), in
that order. Using a space or a comma (,) to separate the values results in a row vector. If we
use a semicolon (;) as the separator, then we will get a column vector. Figure 5.3 shows an

268 Chapter 5. Points In The Plane

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Click 2 points and the centroid will be displayed

Figure 5.3 Inserting the midpoint between two user-selected points

example graphical output.

To summarize, the following syntax gives a row vector:

[〈value1〉 〈value2〉 〈value3〉]
[〈value1〉,〈value2〉,〈value3〉]

To get a column vector, the syntax is

[〈value1〉; 〈value2〉; 〈value3〉]

Any number of values can be specified in a vector.

Function getPoints gives another example of using the bracket notation to create vectors.
This time, we “grow” the vector one cell at a time! Here is how it works. Points are clicked in
until the user chooses to stop by clicking in the designated “stop” area at the top of the window.
See Figure 5.4. The function has to store all the x- and y-coordinates without knowing at the
beginning how many points the user will click. The problem is solved by adding on the latest
data point xp to the end of the current x vector at every pass of the loop:

x= [x xp];

Notice that the separator is the space, meaning that xp is concatenated to the right of the current
vector x. This means that vector x grows by one cell after each pass of the loop. To make the
growing work, x must exist with some value when the statement x= [x xp] executes for the first

5.1. Centroids 269

function [x, y] = getPoints()

% Post: x, y are vectors storing the x and y values of mouse clicks.

% User clicks in a specified area to stop the collection of data.

% Set up the window

close all

figure

hold on

axis equal

axis([-1 1 -1 1.2])

% Set top ’bar’ of window to be the area for user to indicate stop

line([-1 1], [1 1], ’color’, ’r’) % draw line at y=1

text(-0.75, 1.1, ’Click here to stop or click below red line’)

% Get point data

n= 0; % Number of points so far

x= []; % x-coordinates of points (initialized to empty array)

y= []; % y-coordinates of points (initialized to empty array)

[xp, yp]= ginput(1);

while (yp < 1)

plot(xp, yp, ’.’)

n= n + 1;

x= [x xp]; % Concatenate xp to current vector x

y= [y yp];

[xp, yp]= ginput(1); % Get next point

end

An example graphical output of a function call to getPoints is shown in Figure 5.4.

time. Yet at the start of the function, there are no points so x should be empty. We therefore
use the empty array notation [] to be the initial “value” for x and y.

Problem 5.3. Modify function getPoints to implement the following function:

function [x, y]= randPoints(n)

% Post: x,y are vectors of coordinates for n randomly generated points.

% -1<x(k),y(k)<1 for all k= 1..n. Draw all the points. x, y are

% empty arrays if n=0.

% Pre: n>=0

Problem 5.4. Complete the following function:

function [x, y]= smoothPoints(x,y);

% Post: Smooth the line represented by vectors x,y by averaging values of neighboring points.

% Replace (x(i),y(i)) with midpoint of the line segment that connects this point with

270 Chapter 5. Points In The Plane

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Click here to stop or click below red line

Figure 5.4 The getPoints function

% its successor (x(i+1),y(i+1)). Consier (x(1),y(1)) to be the successor of (x(n),y(n))

% where n is length of x, y.

% Pre: length(x)=length(y)>=1

5.2 Max’s and Mins

Consider the problem of finding the smallest rectangle that encloses the points (x1, y1), . . . , (xn, yn).
We assume that the sides of the sought-after rectangle are parallel to the coordinate axes as de-
picted in Figure 5.5. From the picture we see that the left and right edges of the rectangle are
situated at

xL = min{x1, . . . , xn}

xR = max{x1, . . . , xn}

while the bottom and top edges are specified by

yB = min{y1, . . . , yn}

yT = max{y1, . . . , yn}

The problem that confronts us is clearly how to find the minimum and maximum value in a given
array.

5.2. Max’s and Mins 271

Suppose vector x has length 4. To obtain the maximum value in this array, we could proceed
as follows:

s= x(1);

if x(2) > s

s= x(2);

end
if x(3) > s

s= x(3);

end
if x(4) > s

s= x(4);

end

The idea behind this fragment is (a) to start the search by assigning the value of x(1) to s and
then (b) to scan x(2:4) for a larger value. This is done by “visiting” x(2), x(3), and x(4) and
comparing the value found with s. The mission of s is to house the largest value “seen so far.”
A loop is required for a general n:

s= x(1);

for i= 2:n

if x(i)>s

s= x(i);

end
end

Note that after the i-th pass through the loop, the value of s is the largest value in x(1:i). Thus,
if

x(1:6) = 3 2 5 2 7 5

then the value of s changes as follows during the search:

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

Figure 5.5 Minimum Enclosing Rectangle

272 Chapter 5. Points In The Plane

Value of s
i after i-th pass.

Start 3
2 3
3 5
4 5
5 7
6 7

Packaging these find-the-max ideas we get

function s = maxInList(x)

% Post: s is largest value in vector x

% Pre: length(x)>=1

s= x(1);

for k= 2:length(x)

if x(k) > s

s= x(k); %{s = largest value in x(1:k)}
end

end

Searching for the minimum value in an array is entirely analogous. We merely replace the
conditional

if x(k) > s

s= x(k);

end

with

if x(k) < s

s= x(k);

end

so that s is revised downwards anytime a new smallest value is encountered.

function s = minInList(x)

% Post: s is smallest value in vector x

% Pre: length(x)>=1

s= x(1);

for k= 2:length(x)

if x(k) < s

s= x(k); %{s = smallest value in x(1..k)}
end

end

With maxInList and minInList available we can readily solve the smallest enclosing rectangle
problem. Example5 5 shows that two calls to each of these functions are required. We use function

5.2. Max’s and Mins 273

% Example 5 5: Smallest enclosing rectangle

[x, y]= getPoints();

xL= minInList(x); % Left end of rectangle

xR= maxInList(x); % Right end of rectangle

yB= minInList(y); % Bottom of rectangle

yT= maxInList(y); % Top of rectangle

% Draw the rectangle

cx= [xL xR xR xL]; % x-position of corners, clockwise from left

cy= [yT yT yB yB]; % y-position of corners, clockwise from left

% Function plot joins pairs of points in the order given in the vectors.

% Given 4 points, only 3 line segments will be plotted. To "close" the

% rectangle, augment the vectors at the end with the 1st point:

cx= [cx cx(1)];

cy= [cy cy(1)];

plot(cx,cy)

title(’Smallest enclosing rectangle’)

For sample output, see Figure 5.6.

getPoints to obtain a set of user-selected points. Figure 5.6 shows an example output.

Throughout this chapter we have used the plot function to draw our points in the plane. No
doubt you have some ideas now about how the graphics functions work. Let us now examine
plot in detail.

In Example5 5, we have the statement

plot(cx,cy)

which draws line segments connecting the points (cx(1),cy(1)) with (cx(2),cy(2)), (cx(2),cy(2))
with (cx(3),cy(3)), and so on, until the last line segment connecting the points (cx(4),cy(4))
with (cx(5),cy(5)). In general,

plot(a,b)

draws a graph in Cartesian coordinates (x-y axes) using the data points (a(k),b(k)) where
k = 1, 2, . . ., length(a)=length(b). Joining the data points with line segments is the default
graph format of plot. You can specify the line and/or marker format by adding a third argument
in the function call to plot. For example, changing the plot statement in Example5 5 to

plot(cx, cy, ’*’)

will plot the data points with asterisks instead of joining them up with lines. You can add even
more arguments to specify the size of the asterisk:

plot(cx, cy,’*’,’markersize’,20) % 20-point size for the data marker

274 Chapter 5. Points In The Plane

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Click here to stop or click below red line

Smallest enclosing rectangle

Figure 5.6 Minimum Enclosing Rectangle from Example5 5

An example output using the above statement to mark the four corners of the rectangle is shown
in Figure 5.7. Want to have the data points connected with lines and marked by asterisks?
Just add a dash (-) to the marker symbol specification:

plot(cx, cy,’-*’,’markersize’,20) % Note the specification ’-*’

Here are some examples of the line/marker format that you can use with the plot function:

Line/marker specification Effect
- Join data with line, no markers (this is the default)
: Join data with dotted line, no markers
* Mark data with asterisks, no line
. Mark data with dots, no line
o Mark data with circles, no line
x Mark data with crosses, no line
-x Join data with line, mark data with crosses
:x Join data with dotted line, mark data with crosses
--x Join data with dashed line, mark data with crosses
-xr Join data with line, mark data with crosses, in red
-xb Join data with line, mark data with crosses, in blue
-xk Join data with line, mark data with crosses, in black

These are just a few examples. Use Matlab’s help facility to find more details and options. You
can also edit your plot after a plot command has been executed by using the menu bar on the
top of the displayed figure window.

5.2. Max’s and Mins 275

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Click here to stop or click below red line

Smallest enclosing rectangle

Figure 5.7 Corners of Minimum Enclosing Rectangle marked with asterisks

In all the examples in this chapter, we draw multiple graphs on the same set of axes by using
the command

hold on

Once the hold on command has been issued, any subsequent call to plot will add graphs or
points to the the current set of axes. To indicate the end of a current plot and that a later plot
command should replace the current plot with a new one, issue the hold off command.

Let us now return to the topic of “max/min” thinking by considering an important “nearest
point” problem. Assume the availability of a distance function

function d = distance2pts(x1,y1, x2,y2)

% Post: d is the distance from (x1,y1) to (x2,y2)

and that our goal is to find that point in the set {(x1, y1), . . . , (xn, yn)} that is closest to a given
point (x0, y0). See Figure 5.8. There are actually two things for us to find: the index of the
closest point and its distance from (x0, y0). Function nearest below solves this problem:

function [index, dmin] = nearest(x0,y0, x,y)

% Post: (x(index),y(index)) is the point closest to (x0,y0).

% dmin is the distance of the closest point (x0,y0).

% Pre: x and y are coordinate vectors of equal length

index= 1; % Index of closest point so far

276 Chapter 5. Points In The Plane

s

(x1, y1)

s

(x2, y2)

s

(x7, y7)

s

(x4, y4)

s

(x5, y5)

s(x0, y0)
@

@R@
@I

s

(x3, y3)
s

(x6, y6)

Figure 5.8 Nearness to a Point Set

dmin= distance2pts(x0,y0, x(index),y(index));

for k= 2:length(x)

dk= distance2pts(x0,y0, x(k),y(k));

if (dk <dmin)

dmin= dk;

index= k;

end
end

The “search philosophy” is identical to that used in the function minInList. An initial value for
the minimum is established and then a loop steps through all the other possibilities. Whenever a
new minimum distance is found, two variables are revised. The new minimum value is assigned
to dmin and the index of the new closest point is assigned to index.

Example5 6 illustrates the use of the function nearest and uses a single call to the function
plot to draw two graphs on the axes. The first graph is the largest point-free circle centered at
the origin, i.e., the circle centered at (0,0) with dmin as the radius. The second “graph” is the
set of points stored in x, y. An example of the output is shown in Figure 5.9. In order to draw
the circle, we first have to compute the coordinates of the points on the circle centered at the
origin using the equations x = r cos(θ) and y = r sin(θ) where r is the radius. In Example 5 6,
we use 100 points to draw the circle.

Notice how we use a single call of the plot function to draw two graphs on the same set of
axes:

plot(xcircle,ycircle,’-’, x,y,’*’)

The first graph is the circle where the xy data are stored in vectors xcircle and ycircle and
it is drawn with the data points connected by a line (format specification is ’-’). The second
graph is the set of user-specified points stored in vectors x and y, marked by asterisks (format
specification ’*’). Basically, in the argument list of the function plot every pair of vectors of the

same length specifies the xy data for one graph, followed by the (optional) format specification
to be applied to that graph.

5.2. Max’s and Mins 277

% Example5 6: Largest point-free circle

[x, y] = getPoints();

[index, radius] = nearest(0,0, x, y);

% Compute the coordinates of the circle centered at (0,0):

% the set of points (xcircle(p),ycircle(p)) for p=1:npoints

npoints= 100; % draw the circle with n points

xcircle= zeros(1,npoints);

ycircle= zeros(1,npoints);

step= 2*pi/npoints;

for p= 1:npoints

theta= step*p;

xcircle(p)= cos(theta) * radius;

ycircle(p)= sin(theta) * radius;

end

xcircle=[xcircle xcircle(1)]; ycircle=[ycircle ycircle(1)];

% Draw two graphs: (1) the circle, (2) the user-specified points

plot(xcircle,ycircle,’-’, x,y,’*’)

title(’Largest Point-Free Circle Centered at the Origin’)

xlabel(’X’)

ylabel(’Y’)

For sample output, see Figure 5.9.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Click here to stop or click below red line

Largest Point−Free Circle Centered at the Origin

X

Y

Figure 5.9 Sample output from Example5 6

278 Chapter 5. Points In The Plane

We also add a title and the labels for the axes in Example5 6 using the commands title,
xlabel, and ylabel:

title(’Largest Point-Free Circle Centered at the Origin’)

xlabel(’X’)

ylabel(’Y’)

We simply enclose the text for the title or label inside quotation marks. If the title or label needs
to incorporate variable values in addition to simple text, we can use the built-in function sprintf

in much the same way as we have used fprintf. For example,

words= sprintf(’Largest Point-Free Circle has Radius %f’, radius);

title(words)

will print as the title the text

Largest Point-Free Circle has Radius 0.4

if the value stored in variable radius is 0.4. All the substitution sequences that we use with
fprintf can be used with sprintf. The only difference is that sprintf returns the text that
can then be stored in a variable for later use, whereas fprintf only prints text (to the screen)
without the option to save it for later use.

Another way to format a plot is to use the menu bar items that are displayed in the figure
window once the plot command has been executed. The format options in the menu bar allows
you to change line/marker style and color, add a title, add axis labels, and add text anywhere
on the graph, among other things.

Our discussion above covers the fundamentals of plotting using Matlab. Later chapters
will further demonstrate Matlab’s graphics facility. Experimentation is an important aspect
of learning, so “play” with the examples that we have given to learn more! You can also use
Matlab’s Help documentation to find out more about graphics.

Problem 5.5. We say that the set

{ (x1 + hx, y1 + hy), . . . , (xn + hx, yn + hy) }

is a translation of the set
{ (x1, y1), . . . , (xn, yn) } .

Write a script that translates into the first quadrant, an arbitrary set of points obtained by getPoints. Choose
the translation factors hx and hy so that the maximum number of points in the translated set are on the x and y
axes. Display the translated set in a color different from that of the original point set.

Problem 5.6. Complete the following procedure

function [p,q,dp,dq] = twoNearest(x0,y0, x,y)

% Post: Points (x(p),y(p)) and (x(q),y(q)) are the closest and second closest points

% to (x0,y0). dp and dq are their respective distances.

% Pre: length(x) = length(y) >=2

5.2. Max’s and Mins 279

Using twoNearest, write a program that obtains an arbitrary set of points using getPoints and draws a triangle
defined by the origin and the two points nearest to it.

Problem 15.7. Complete the following:

function [x, y] = smoothPoints(x, y);

% Post: Replace (x(i),y(i)) with the midpoint between it and its successor.

% (The successor of the ith point is point (i+1) unless i=n. The successor

% of the n-th point is the 1st point.)

% Pre: length(x) = length(y) >=1

function [x, y] = translatePoints(x, y)

% Post: For i=1:length(x), x(i) and y(i) are replaced by x(i)-xbar and y(i)-ybar}
% where (xbar,ybar) is the centroid.

% Pre: length(x) = length(y) >=1

function [x, y] = scalePoints(x, y, r)

% Post: The point set is scaled so that r is the distance of the

% furthest point to the origin.

% Pre: length(x) = length(y) >=1

function ratio = variation(x, y)

% Post: The ratio of the longest to shortest edge of the polygon obtained by

% connecting the points (x(1),y(1)),...,(x(n),y(n)) in order.

% Pre: length(x) = length(y) >=1

Using these functions, build an environment that permits the easy exploration of the changes that a random point
set undergoes with repeated smoothing. After each smoothing, the point set should be translated and scaled for
otherwise it “collapses” and disappears from view. You should find that the polygon defined by the points takes
on an increasingly regular appearance. The function variation measures this and its returned value should be
displayed.

