
Chapter 3

Sequences

§3.1 Summation

Nested loops, while-loops with compound termination criteria

§3.2 Recursions

One-term recursion, searching for a first occurrence, two-term recursion.

In Chapter 2 we played with the sequence of regular n-gon areas {an} where

An =
n

2
sin

(

2π

n

)

.

We numerically “discovered” that
lim

n→∞

An = π ,

a fact that is consistent with our geometric intuition.

In this chapter we build our “n-th term expertise” by exploring sequences that are specified
in various ways. At the top of our agenda are sequences of sums like

Sn = 1 +
1

4
+

1

9
+ · · · +

1

n2
.

Many important functions can be approximated by very simple summations, e.g.,

exp(x) ≈ 1 + x +
x2

2!
+ · · · +

xn

n!
.

The quality of the approximation depends upon the value of x and the integer n.

Sometimes a sequence is defined recursively. The n-term may be specified as a function of
previous terms, e.g.,

fn =







1 if n = 1 or 2

fn−1 + fn−2 if n ≥ 3

Sequence problems of this variety give us the opportunity to practice some difficult formula-to-
program transitions.

75

76 Chapter 3. Sequences

3.1 Summation

The summation of a sequence of “regularly scheduled” numbers is such a common enterprise that
a special notation is used. This is the “sigma” notation and here is an example:

n
∑

k=0

xk

k!
= 1 + x +

x2

2!
+ · · · +

xn

n!
.

The value of many regular summations is known. For example, the sum of the first n positive
integers is given by

n
∑

k=1

k =
n(n + 1)

2
. (3.1.1)

It is interesting to write programs that check rules like this. The program Example4 1 confirms
that the sum of the first n integers is given by the above rule for n = 1 to 20.

% Example3 1: Check the rule for the summation of the first n integers

nmax= 20; % The no. of n-values used in the rule checking

s= 0; % The sum of the sequence so far

% Print the column headings

fprintf(’\n’);
fprintf(’\n n \t Sum \t n(n+1)/2 \n’);
fprintf(’---------------------------\n’);

% Compute summation of first n integers

for n= 1:nmax

s= s+n;

rhs= n*(n+1)/2;

fprintf(’%3d \t %3d \t %8d \n’, n, s, rhs);

end

Output:

n Sum n(n+1)/2

1 1 1

2 3 3

3 6 6

...

19 190 190

20 210 210

The program uses a for-loop to actually compute the summation. The result is then printed
side-by-side with the value of the summation formula. The program is not a proof of Equation

3.1. Summation 77

(3.1.1); it merely checks its correctness for a small set of possible n.

Problem 3.1. Modify Example3 1 so that it confirms the following for n = 1..20:

n
∑

k=1

k2 =
n(n + 1)(2n + 1)

6
.

Problem 3.2. It is possible to find real numbers a, b, c, d, and e so that

n
∑

k=1

k3 = an4 + bn3 + cn2 + dn + e

for all n. Note that if n is large enough, then

n
∑

k=1

k3 ≈ an4.

By dividing both sides by n4 and assuming that n is large, we see that

a ≈

(

n
∑

k=1

k3

)

/n4

Write a program that estimates a using this approximation for n = 1, . . . , 50.

Problem 3.3. If r 6= 1, then it can be shown that

n
∑

k=0

rk =
1 − rn+1

1 − r

Modify Example3 1 so that it confirms this for n = 1, . . . , 20. Design the modification so that the value of r is
obtained as input.

Problem 3.4. Modify Example3 1 so that it confirms the following summation for n = 1..12:

(1 + 2 + · · · + n)2 = 13 + 23 + · · · + n3

for n = 1, . . . , 20.

Given a real number x, define Sn to be the summation

Sn =

n
∑

k=0

(−1)kx2k+1

(2k + 1)!

i.e.,

Sn = x −
x3

3!
+

x5

5!
−

x7

7!
+

x9

9!
− . . . + (−1)n x2n+1

(2n + 1)!

The general term

ak = (−1)k x2k+1

(2k + 1)!

for this summation looks formidable. It appears that each term requires (a) an exponentiation
of -1, (b) an exponentiation of x, and (c) a factorial. But with a little thought, it is clear that we

78 Chapter 3. Sequences

do not have to start these computations “from scratch” with the generation of each new term.
For example, if

a6 =
x13

13!
is available, then we can compute a7 from the formula

a7 = −
x15

15!
= −

x2x13

15 · 14 · 13!
= −a6

x2

15 · 14

In general, since x2k+1 = x2 · x2k−1 and

(2k + 1)! = (2k + 1)(2k)(2k − 1)!,

we have
ak

ak−1
= (−1)k x2k+1

(2k + 1)!

/

(−1)k−1 x2k−1

(2k − 1)!
=

−x2

(2k + 1)(2k)

and so

ak =
−x2

(2k + 1)(2k)
ak−1.

Given this recursion, here is a fragment that assigns to s the value of Sn assuming that n and x

are initialized:

s= x;

numerator= -x*x;

a= x; % {a(0)}
for k= 1:n

a= a * (numerator / (2*k*(2*k+1))); % {a(k)}
s= s + a;

end

The key idea is to develop a recursion that relates the current term ak to its predecessor ak−1.

One can write a mathematically equivalent fragment that computes the term ak = (−1)k x2k+1

(2k+1)!

independently for each k. In that case, we calculate the components (−1)k, x2k+1, and (2k + 1)!
from scratch for each k, so the program has the following structure:

s= 0;

for k= 0:n

〈Task 1: calculate (−1)k, store in variable minusOnePower〉
〈Task 2: calculate x2k+1, store in variable xPower〉
〈Task 3: calculate (2k + 1), store in variable factorialTerm〉
s= s + minusOnePower*xPower/factorialTerm;

end

Task 1, evaluating (−1)k, can be accomplished simply by using a conditional statement:

% Task 1:

if (mod(k,2)==1)

minusOnePower= -1;

else

minusOnePower= 1;

end

3.1. Summation 79

To calculate the second component x2k+1, one can use Matlab’s power operator ˆ or multiply
x by itself a number of times. We’ll use a for-loop:

% Task 2:

xPower= 1;

for j= 1:2*k+1

xPower= x*xPower;

end

This loop deals with the evaluation of a power of x only, using a new index variable j. Looking
back at the outline for calculating Sn, we see that this fragment for Task 2, which involves a
loop, will be put “inside” another loop. We are not concerned by this since we have “itemized”
the individual tasks in the outline above and we are now simply “filling in the detail” for one
item. We will look at how these loops execute after we write the code for Task 3 for computing
a factorial:

% Task 3:

factorialTerm= 1;

for i= 1:2*k+1

factorialTerm= i*factorialTerm;

end

Again, we need a loop for calculating the factorial. Notice, however, that the loop index variables
j and i for Tasks 2 and 3, respectively, take on the same values as the loop bodies are executed.
This tells us that we can use one loop for Tasks 2 and 3 together. Suppose we choose to use the
index variable j, then we have

% Tasks 2 and 3:

xPower= 1;

factorialTerm= 1;

for j= 1:2*k+1

xPower= x*xPower;

factorialTerm= j*factorialTerm;

end

Putting all the fragments for Tasks 1, 2, and 3 into the “outline” for calculating Sn, we have

s= 0;

for k= 0:n

% Task 1:

if (mod(k,2)==1)

minusOnePower= -1;

else

minusOnePower= 1;

end

% Tasks 2 and 3:

xPower= 1;

factorialTerm= 1;

80 Chapter 3. Sequences

for j= 1:2*k+1

xPower= x*xPower;

factorialTerm= j*factorialTerm;

end

s= s + minusOnePower*xPower/factorialTerm;

end

This fragment contains nested loops, i.e., one loop is inside another. We will refer to the loop on
the outside, with index k, as the “outer loop” and the loop with index j as the “inner loop.” How
do the loops execute? In exactly the same way as we have discussed in Chapter 2! Looking at
the “big picture” first, we see that index k takes on its first value, 0, then the outer loop’s body
is executed. Then k takes on its next value, 1, and execute the outer loop’s body. This goes on
until k takes on its final value, n, and execute the outer loop’s body a final time. Whenever we
say “execute the outer loop’s body,” we can replace that phrase with the detail below, keeping
in mind that k holds a single value at the moment:

• Task 1 is executed.

• Tasks 2 and 3 begins execution.

• Index j takes on its first value, 1.

• The inner loop’s body is executed

• Index j takes on its next value, 2.

• The inner loop’s body is executed
...

• Index j takes on its last value, 2k + 1

• The inner loop’s body is executed

• Tasks 2 and 3 have been completed. Update the value of s (last statement inside the outer
loop).

If you analyze the values of the the two index variables k and j throughout the execution of the
fragment, you will see the following “time line”:

Time −→
k 0 1 1 1 2 2 2 2 2 . . . n · · · n
j 1 1 2 3 1 2 3 4 5 1 2 · · · 2n 2n + 1

The nested loops may appear complex when you look at the entire program, but in fact we
never had to worry about the nesting when we developed the program. We first itemized the
tasks within the loop with index k. At that time, there was only one loop, the k-loop. When
we filled in the detail for items 2 and 3, we created a second loop, the j-loop. Since items 2
and 3 were itemized inside the k-loop, the entire j-loop went inside the k-loop. Therefore, the
nested structure is a simple consequence of our systematic, “top-down” approach to developing
the program rather than a program feature that you have to worry about at the outset. Of
course, as you develop more programs you will begin to “foresee” nested structures when they

3.1. Summation 81

are needed. For right now, however, concentrate on decomposing a problem into an itemized list of
individual tasks to be accomplished. Then the nested structures will simply “reveal” themselves
as you “fill in the detail” for the individual tasks.

We have shown now two approaches to calculating the summation Sn: (1) determine (by
hand) the recursion that relates the term ak to ak−1 and then writing a simple, single-loop
program, and (2) write a program that calculates the terms independently “from scratch” for
each k. Although we shall study the issue of efficiency more formally later on, it is obvious that
the “from scratch” approach1 is inferior in terms of the amount of required computation.

Now let us consider n for the summation Sn. It is known that for large n, sin(x) ≈ Sn. Thus,
instead of building the summation for a fixed n, we may wish to continue the process of adding
in terms until |Sn − sin(x)| is small. e.g.,

s= x;

numerator= -x*x;

a= x; % {a(0)}
sinx= sin(x);

k= 0;

while (abs(s-sinx) > 0.0001)

k= k+1; a= a * (numerator / (2*k*(2*k+1))); % {a(k)}
s= s + a;

end

A danger with this kind of exploration is that it may take an inordinate number of iterations
before the termination criterion is satisfied. To guard against this possibility it is advisable to
“put a lid” on the maximum number of steps. All we need to do is change the while statement
to include a second criterion:

while (abs(s-sinx) > 0.0001 && (k < 20))

Unlike the above example, it is usually the case that the limiting value of a summation is
unknown and the termination criteria cannot be based upon the proximity to the limit. In this
case, a reasonable course of action is to terminate when the value of the term about to be added
is small, e.g.,

while (abs(a) > 0.0001 && (k < 20))

It is sometimes preferable to terminate when the current term is small relative to the current
sum, e.g.,

while (abs(a) > 0.0001*abs(s) && (k < 20))

Taking this last approach to termination, program Example3 2 provides an interactive frame-
work that enables us to examine Sn as an approximation to sin(x). Notice the nested while-loops.
The outer loop guard is part of the “interactive framework” that we developed in Chapter 2.

1The “from scratch” approach can take a very compact form by making use of Matlab’s power operator ˆ
and built-in function factorial. In that case there will be one loop only and the loop body consists of the
single statement s= s + (-1)ˆk * xˆ(2*k+1) / factorial(2*k+1). Although this appears compact, it involves

82 Chapter 3. Sequences

% Example3 2: Interactive exploration of the series for sin(x)

anotherEg= ’y’;

% Loop until the user quits the program

while (anotherEg ∼= ’n’)

x= input(’Enter x: ’);

fprintf(’ n \t Approximation \t Error\n’);
fprintf(’---------------------------------\n’);
% Compute the sine series

s= x; % Current sum

a= x; % ratio between a k+1, a k

k= 0;

while (abs(a) > .0001*abs(s) && k<20)

k= k + 1;

a= a * ((-x*x)/(2*k*(2*k+1)));

s= s + a;

fprintf(’%3d \t %8.5f \t %8.5f \n’, k, s, abs(s-sin(x)));

end

anotherEg = input(’\nAnother example (y/n)? ’,’s’);

end.

Sample output:

Enter x: 1

n Approximation Error

1 0.83333 0.00814

2 0.84167 0.00020

3 0.84147 0.00000

4 0.84147 0.00000

Another example (y/n)? n

3.1. Summation 83

Within this interactive framework, we put the code for the sine series, which consists of its own
loop. In developing the code, you wouldn’t worry about both loops at the same time. Instead,
first put down the “big picture”:

anotherEg= ’y’;

% Loop until the user quits the program

while (anotherEg ∼= ’n’)

% Compute the sine series

anotherEg = input(’\nAnother example (y/n)? ’,’s’);

end

The while-loop of the interactive framework is simple, so we put that down first and then just
name the task yet to be accomplished using a comment—do not worry about all the details of the
problem all at once. At this stage, you can test your program-in-progress by running it. After
you get a working interactive framework, then you start writing the code for the task “compute
the sine series.” This code involves a loop, but that is not a problem at all, as you will deal with
just one single loop for the series calculation and you can ignore the already completed outer
loop. Decomposing the problem into these two main tasks simplifies your work since each task is
smaller than the original problem.

Problem 3.5. For large n,

Rn = 1 − 1
3 + · · · − (−1)n+1

2n − 1 =
∑n

k=1

(−1)k+1

2k−1
≈ π

4

Tn = 1 + 1
22 + · · · + 1

n2 =
∑n

k=1
1

k2 ≈ π2

6

Un = 1 + 1
24 + · · · + 1

n4 =
∑n

k=1
1

n4 ≈ π4

90

Write a single program (with three loops) that computes and prints the smallest n so that

∣

∣

∣
Rn − π

4

∣

∣

∣
≤ 0.001,

the smallest n so that
∣

∣

∣

∣

Tn − π2

6

∣

∣

∣

∣

≤ 0.001,

and the smallest n so that
∣

∣

∣

∣

Un − π4

90

∣

∣

∣

∣

≤ 0.001.

just about the same amount of computation as the “from scratch” approach given in the main text because each
component of each term is still computed independently without taking advantage of the computation done for
the previous term. If computational efficiency is not a concern, then this compact form does have one advantage:
the general formula is stated explicitly in the program.

84 Chapter 3. Sequences

Problem 3.6. Each of the following sequences converge to π:

an =
6√
3

n
∑

k=0

(−1)k

3k(2k + 1)

bn = 16

n
∑

k=0

(−1)k

52k+1(2k + 1)
− 4

n
∑

k=0

(−1)k

2392k+1(2k + 1)

Write a single program that prints a0 , . . . , an where n is the smallest integer so |an − π| ≤ .000001 and prints
b0, . . . , bn where n is the smallest integer so |bn − π| ≤ .000001.

Problem 3.7. For all positive n, define

an =

n2

∑

j=1

n

n2 + j2
.

Write a program that prints a2, . . . , an where n is the smallest integer such that |an−1−an| ≤ .01. Hint. Structure
your solution as follows:

〈Compute a1 and a2.〉
n= 2;

while (|an−1 − an| > 0.01)
n= n+1;

〈Compute an〉
end

The computation of an requires a loop itself and so this is a nested-loop problem.

Problem 3.8. Explore the following approximations by modifying Example3 2. Warning: some of the approxi-
mations deteriorate very rapidly as |x| gets large.

(a) cos(x) ≈
n
∑

j=0

(−x2)j

(2j)!

(b) csc(x) = 1/ sin(x) ≈ 1

x
+ 2x

n
∑

j=1

(−1)j

x2 − k2π2

(c) sinh(x) =
ex − e−x

2
≈

n
∑

j=0

x2j+1

(2j + 1)!

(d) cosh(x) =
ex + e−x

2
≈

n
∑

j=0

x2j

(2j)!

(e) exp(x) ≈
n
∑

j=0

xk

k!

Problem 3.9. Write a program that verifies the inequalities

2

3
n
√

n ≤
n
∑

k=1

√
k ≤ 4n + 3

6

√
n

for n = 1, . . . , 100.

3.1. Summation 85

Problem 3.10. Define

En =

(

n
∑

k=1

1

k

)

− ln(n)

It is known that En converges to the Euler constant for large n. Write a program that prints E100k for

k = 1, . . . , 100.

Analogous to the summation problem is the “product problem.” Consider the following
sequence:

P0 = 2, P1 = 2

(

2

1

2

3

)

, P2 = 2

(

2

1

2

3

)(

4

3

4

5

)

, P3 = 2

(

2

1

2

3

)(

4

3

4

5

)(

6

5

6

7

)

, etc.

In general,

Pk = Pk−1
2k

2k − 1

2k

2k + 1
= Pk−1

4k2

4k2 − 1

and we have

product= 2;

for k= 1:n

factor= 4*k*k/(4*k*k -1);

product= product*factor;

end

In order to specify products succinctly, there is a notation analogous to the Σ-notation. If
a0, a1, . . . then

Pk =
k
∏

j=0

aj = a0a1a2 · · · ak.

Thus, in the above example, a0 = 2 and ak = 4k2/(4k2 − 1) for k ≥ 1.

Problem 3.11. Using the interactive framework, explore the quality of the approximation

sin(x) ≈ x

n
∏

j=1

(

1 − x2

j2π2

)

Use n = 50 and print all the partial products and their errors.

Problem 3.12. Numerically determine the value of

Pn =

n
∏

k=2

k3 − 1

k3 + 1

as n gets large.

86 Chapter 3. Sequences

3.2 Recursions

The simplest way that a sequence {an} can be specified is with an explicit recipe for each term,
e.g., an = 2−n. Sometimes a sequence is defined by giving the first term and then a rule for all
the successors:

an =







1 if n = 0

n · an−1 if n ≥ 1
.

This is an example of a one-term recurrence and we see that

a1 = 1 · a0 = 1
a2 = 2 · a1 = 2
a3 = 3 · a2 = 6
a4 = 4 · a3 = 24

The fragment

a= 1;

for n= 1:4

a= a*n;

fprintf(’%d \t %d \n’, n, a)

end

produces a short table with the same values. It is not hard to see that values of the factorial
function are being reported:

an = n! = 1 · 2 · 3 · · ·n

The n-th term for this particular one-term recursion can be specified explicitly, but this typically
is not the case. An interesting example that does not permit the “closed formula” expression for
the general term is the “up and down” sequence:

an =























any positive integer if n = 1

an−1/2 if n > 1 and an−1 is even

3an−1 + 1 if n > 1 and an−1 is odd

Thus, if a1 = 17, then the sequence

17, 52, 26, 13, 40, 20, 10, 5 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, . . .

is produced. Notice that once the number one “is reached”, the cycle 1,4,2,1,4,2,.. begins. It is
known that the up and down sequence always reaches one no matter what the choice of a1 is.
There is no simple, explicit recipe for an as in the case for the factorial sequence.

Let f(m) designate the smallest integer so af(m) = 1 given that a1 = m. From the above
example we see that f(17) = 13. We may also conclude from that same example that f(1) = 1,
f(4) = 3, and f(52) = 12. If m houses the starting integer m, then the fragment

3.2. Recursions 87

a= m;

k= 1;

while (a ∼= 1)

% {a = a(k)}
if (mod(a,2) == 0)

a= a/2;

else

a= 3*a + 1;

end

k= k + 1;

end

fprintf(’f(m) = %d \n’, k)

prints the value of f(m).

Now let’s augment this fragment so that it also prints the largest value encountered along the
up-and-down route from m to 1. This is the first of many look-for-the-max problems that we
shall encounter. It requires the maintenance of a variable whose mission is to keep track of the
largest integer encountered “so far.” The program Example3 3 presents the details. Notice that
aMax is initially set to m, the starting value. Each time a new a-value is generated, it is compared
to the value of aMax. The variable aMax always houses the largest a-value that has arisen since
the loop started. More precisely,

aMax = max{a1, . . . , ak}

If a > aMax is true, then a new largest value has been encountered and aMax is revised accordingly.

Problem 3.13. Modify Example3 3 so that for starting values m = 1, 2, . . . , 100, it prints m, f(m), and the
associated max value.

The Fibonacci sequence gives us an opportunity to see what an iteration looks like that is
based upon a two-term recurrence. Here is a table of the first 8 Fibonacci numbers f1, . . . , f8:

k 1 2 3 4 5 6 7 8
fk 1 1 2 3 5 8 13 21

The pattern should be clear. Once we “get going,” each Fibonacci number is the sum of its two
predecessors:

fk =







1 if k = 1
1 if k = 2
fk−1 + fk−2 if k > 2

This is an example of a two-term recurrence and a loop that generates such a sequence requires the
maintenance of two variables. One variable (call it current) is needed for the current Fibonacci
number and another (call it old) is needed for its predecessor. The triplet

88 Chapter 3. Sequences

% Example3 3: The Up-and-Down Sequence

fprintf(’\n m \t f(m) \t max \n’)
fprintf(’---------------------\n’)

for m= 50:60

a= m; % a = a(k)

k= 1;

aMax= m; % Max value of a so far

while (a ∼= 1)

if (mod(a,2) == 0)

a= a/2;

else

a= 3*a + 1;

end

if (a > aMax)

aMax= a;

end

k= k + 1;

end

fprintf(’%3d \t %4d \t %4d\n’, m, k, aMax);

end

Output:

m f(m) max

50 25 88

51 25 232

52 12 52

53 12 160

54 113 9232

55 113 9232

56 20 56

57 33 196

58 20 88

59 33 304

60 20 160

3.2. Recursions 89

new=current+old; old=current; current=new;

updates these two variables so that they respectively house the next Fibonacci number and its

predecessor. Figure 3.1 depicts the changes these variables undergo assuming that initially
current = 5, old = 3, and new = 5.

State 0:
5

current

3

old

5

new

Action 1: new= current+old

State 1:
5

current

3

old

8

new

Action 2: old= current

State 2: 5

current

5

old

8

new

Action 3: current= new

State 3: 8

current

5

old

8

new

Figure 3.1 The Fibonacci Update

Example3 4 puts the Fibonacci updates under the control of a while-loop and prints a list
of all the Fibonacci numbers that are less than one million. Notice that the first two Fibonacci
numbers are set up before the loop begins.

90 Chapter 3. Sequences

% Example3 4: Print all Fibonacci numbers less than a given upper bound

current= 1; % f(k)

old= 1; % f(k-1)

k= 2;

bound= 1000000;

fprintf(’\n k \t f(k) \n’);
fprintf(’-----------------\n’);
fprintf(’%3d \t %8d \n’, 1, old);

fprintf(’%3d \t %8d \n’, 2, current)

while (current+old < bound)

new= current+old; % f(k+1)

old= current;

current= new;

k= k+1;

fprintf(’%3d \t %8d \n’, k, current)

end

Output:

k f(k)

1 1

2 1

3 2

4 3

5 5

6 8
...

28 317811

29 514229

30 832040

3.2. Recursions 91

Problem 3.14. Modify Example3 4 so that it reads in an integer x > 1 and prints Fibonacci numbers fk and fk+1

where fk ≤ x < fk+1.

Problem 3.15. Modify Example3 4 so that it reads in a positive integer and prints a message that indicates
whether or not it is a Fibonacci number.

Problem 3.16. Define rk = fk/fk−1, the ratio of fk to its predecessor. Modify Example3 4 so that it prints
r3, . . . , rn where n is the smallest integer with the property that |rn − rn−1| ≤ 0.000001.

Problem 3.17. Define

t0 =
√

1 + 0

t1 =
√

1 + 1

t2 =
√

1 + 2

t3 =
√

1 + 2
√

1 + 3

t4 =

√

1 + 2
√

1 + 3
√

1 + 4

t5 =

√

1 + 2

√

1 + 3
√

1 + 4
√

1 + 5

Pick up the pattern and develop a program that prints t1, . . . , t26. A loop is required for each tk .

Problem 3.18. Let m be a positive integer and consider the sequence

t1 =
√

m

t2 =
√

m −
√

m

t3 =

√

m −
√

m +
√

m

t4 =

√

m −
√

m +
√

m −
√

m

t5 =

√

m −

√

m +

√

m −
√

m +
√

m

Pick up the pattern and write a program that helps you determine the limit of tn as n gets large. Use the
interactive framework, soliciting m and iterating until |tn − tn−1 | ≤ .0001. For your information, the limit is an
integer if m = 7, 13, 21, 31, or 43. A loop is required for each tk .

