
28

Chapter 2

Numerical Exploration

§2.1 Discovering Limits
The for-loop and the while-loop

§2.2 Floating Point Terrain
The floating point representation, exponent, mantissa, overflow, underflow, ma-

chine precision, eps, inf, realmax, roundoff error

§2.3 Confirming Conjectures
Analyzing errors

§2.4 Interactive Frameworks
The type char, testing

All work and no play does not a computational scientist make. It is essential to be able to play

with a computational idea before moving on to its formal codification and development. This
is very much a comment about the role of intuition. A computational experiment can get our
mind moving in a creative direction. In that sense, merely watching what a program does is no
different then watching a chemistry experiment unfold: it gets us to think about concepts and
relationships. It builds intuition.

The chapter begins with a small example to illustrate this point. The area of a circle is
computed as a limit of regular polygon areas. We “discover” π by writing and running a sequence
of programs.

Sometimes our understanding of an established result is solidified by experiments that confirm
its correctness. In §2.2 we check out a theorem from number theory that says 32k+1+2k is divisible
by 7 for all positive integers k.

To set the stage for more involved “computational trips” into mathematics and science, we
explore the landscape of floating point numbers. The terrain is finite and dangerous. Our aim is
simply to build a working intuition for the limits of floating point arithmetic. Formal models are
not developed. We’re quite happy just to run a few well chosen computational experiments that
show the lay of the land and build an appreciation for the inexactitude of real arithmetic.

29

30 Chapter 2. Numerical Exploration

Figure 2.1 Regular n-gons

Figure 2.2 Inscribed n-gon

The design of effective problem-solving environments for the computational scientist is a
research area of immense importance. The goal is to shorten the path from concept to computer
program. We have much to say about this throughout the text, In §2.4 we develop the notion of
an interactive framework that fosters the exploration of elementary computational ideas.

2.1 Limits

A polygon with n equal sides is called a regular n-gon. Figure 2.1 illustrates two cases. Given
n equally spaced points around a circle C, there are two ways to construct a regular n-gon. One
is simply to connect the points in order. Each point is then a vertex of the n-gon which is said
to be inscribed in C. See Figure 2.2. On the other hand, the tangent lines at each point define
a regular n-gon that circumscribes C. See Figure 2.3. If C has radius one, then the areas of
these two regular n-gons are given by

An = (n/2) sin(2π/n) (Inscribed)

2.1. Limits 31

Figure 2.3 Circumscribed n-gon

Bn = n tan(π/n) (Circumscribed)

These formulas can be derived by chopping the n-gon into n equal triangles and summing their
areas. Now for any value of n that satisfies n ≥ 3, the fragment

% Fragment A

innerA= (n/2)*sin(2*pi/n);

outerA= n*sin(pi/n)/cos(pi/n);

fprintf(’%4d %9.6f %9.6f \n’, n, innerA, outerA);

prints n, An, and Bn. It follows that

n= 3;

innerA= (n/2)*sin(2*pi/n);

outerA= n*sin(pi/n)/cos(pi/n);

fprintf(’%4d %9.6f %9.6f \n’, n, innerA, outerA);

n= 4;

innerA= (n/2)*sin(2*pi/n);

outerA= n*sin(pi/n)/cos(pi/n);

fprintf(’%4d %9.6f %9.6f \n’, n, innerA, outerA);

n= 5;

innerA= (n/2)*sin(2*pi/n);

outerA= n*sin(pi/n)/cos(pi/n);

fprintf(’%4d %9.6f %9.6f \n’, n, innerA, outerA);

n= 6;

innerA= (n/2)*sin(2*pi/n);

outerA= n*sin(pi/n)/cos(pi/n);

fprintf(’%4d %9.6f %9.6f \n’, n, innerA, outerA);

produces a 4-line table that reports on the areas for n = 3,4,5 and 6:

32 Chapter 2. Numerical Exploration

3 1.299038 5.196152

4 2.000000 4.000000

5 2.377641 3.632713

6 2.598076 3.464102

This approach to table generation is tedious. It would be much handier if we could specify the
repetition as follows:

〈Execute the following fragment for n= 3,4,5,and 6:〉
innerA= (n/2)*sin(2*pi/n);

outerA= n*sin(pi/n)/cos(pi/n);

fprintf(’%4d %9.6f %9.6f \n’, n, innerA, outerA);

The for-loop is designed precisely for this kind of situation:

for n= 3:1:6

innerA= (n/2)*sin(2*pi/n);

outerA= n*sin(pi/n)/cos(pi/n);

fprintf(’%4d %9.6f %9.6f \n’, n, innerA, outerA);

end

Here is how it works. The line of code that contains the keyword for, sometimes called the loop

header, specifies all the values that the index variable n will take on. The expression 3:1:6 reads
“3 to 6 with increments of 1,” meaning that n will take on the values 3, 4, 5, and 6. The loop
starts with n taking on the first value, 3. Then the loop body

innerA= (n/2)*sin(2*pi/n);

outerA= n*sin(pi/n)/cos(pi/n);

fprintf(’%4d %9.6f %9.6f \n’, n, innerA, outerA);

is executed. For this pass through the loop, the value of n is 3 and the inner and outer areas are
calculated and printed. After this, n takes on the second value, 4, and the loop body executes
again. This pattern is repeated where n takes on the values 5 and 6, the remaining values as
specified by the loop header.

The beauty of this arrangement is that it is just as easy to produce a “3-to-100” table as
it is to produce a “3-to-6” table. Indeed, the program Example2 1 enables us to let n range
between any two integers of our choice. Notice the judicious use of comments to assist in the
understanding of the loop. The example reveals the general form of the for-loop:

for 〈Index Variable〉 = 〈Left Bound〉 : 〈Increment〉 : 〈Right Bound〉
〈The fragment to be repeated goes here.〉

end

Within the loop body, the index variable can be referenced, but it should never appear to the
left of the assignment operator. The expression

〈Left Bound〉 : 〈Increment〉 : 〈Right Bound〉

2.1. Limits 33

% Example 2 1: Compute the areas of regular polygons that are inscribed

% and circumscribed in the unit circle.

% Lower & upper bounds for computation

low= input(’Enter least number of sides: ’);

high= input(’Enter most number of sides: ’);

% Print the column headings

fprintf(’\n n\t A(n)\t B(n)\n’);
fprintf(’---------------------------\n’);

% Compute and print areas of n-gons

for n= low:1:high

innerA= (n/2)*sin(2*pi/n); % inscribed area

outerA= n*sin(pi/n)/cos(pi/n); % circumscribed area

fprintf(’%4d %9.6f %9.6f \n’, n, innerA, outerA);

end

fprintf(’---------------------------\n’);

Sample output:

Enter least number of sides: 15

Enter most number of sides: 20

n A(n) B(n)

15 3.050525 3.188348

16 3.061467 3.182598

17 3.070554 3.177851

18 3.078181 3.173886

19 3.084645 3.170539

20 3.090170 3.167689

34 Chapter 2. Numerical Exploration

generates the list of values that the index variable will take on, one for each pass of the loop.
The 〈increment〉 may be negative in order to have the index count down instead of up. If 〈right

bound〉 < 〈left bound〉 and the 〈increment〉 is positive, or if 〈right bound〉 > 〈left bound〉 and
the 〈increment〉 is negative, then the expression does not generate a valid list of values (an empty

set in mathematical term) for the index variable and the body of the entire loop is skipped and
execution continues with the terminating fprintf statement.

Instead of soliciting the starting and stopping values of n, we may wish to have the user enter
the starting value of n and the length of the table that is to be produced. We merely alter the
beginning of the program body in Example2 1 by introducing the variable lines for the length
of the table, as follows:

low= input(’Enter least number of sides: ’);

lines= input(’Enter length of table: ’);

fprintf(’\n n\t A(n)\t B(n)\n’);
fprintf(’---------------------------\n’);

for n= low:1:low+lines-1
...

end

This modification shows how expressions involving variables can “show up” in the for-loop
statement. To build confidence in the correctness of the loop bounds, it is often useful to check
out a few cases “by hand:”

low lines Desired Sequence low+lines-1

3 0 (None) 2
3 1 3 3
3 4 3,4,5,6 6

An increment of one is so commonly used that it is the default value of the increment in a
for loop. For example, the for loop header for k= 3:1:6 is the same as for k= 3:6. In both
cases, index variable k takes on the values 3, 4, 5, 6 one at a time.

For-loops are useful whenever repetition is needed in a regimented fashion, i.e., the loop index
variable increases or decreases in fixed increments. Suppose we want to produce a table of area
values for n = 5, 10, 15, . . . , 100. Repetition is certainly involved because the required table has
multiple lines with n increasing by 5 in each line. We will then use the following loop:

for n= 5:5:100

〈Print the n-th line of the table〉
end

We easily determine that the loop body will execute 20 times. We call such a case where it is
easy to determine how many times the loop body will execute definite iteration.

Problem 2.1. Write a program that reads in integers a, b, and m where a ≤ b and m > 0 and prints a table of
sine values. The table entries should range from ao to bo with spacing (1/m)o. Thus, if a = 1, b = 3, and m = 2,
then the table should report the sine of 1o, 1.5o, 2o, 2.5o, and 3o.

2.1. Limits 35

Problem 2.2. Here are the n-stars of size 5 and 12:

The precise definition of an n-star is not important. Suffice it to say that the area of an n-star that is inscribed
in the unit circle is given by

A(n) =

n
cos(π/(2n)) − cos(3π/(2n))

2 sin(3π/(2n))
if n is odd

n
1 − cos(2π/n)
2 sin(2π/n)

if n is even

and its perimeter by

E(n) =

sin(π/n)
sin(3π/(2n))

if n is odd

sin(π/n)
sin(2π/n)

if n is even

.

Write a program that prints a table whose k-th line has the values n, A(n), E(n), A(n + 1), E(n + 1) where

n = 10k. The value of k should range from 1 to 20.

As n increases, the regular inscribed and circumscribed n-gons converge to the circle. Since
the area of the unit circle is π, we have

lim
n→∞

An = π lim
n→∞

Bn = π .

Moreover, for all n >= 3 we have
An < π < Bn .

This limiting behavior allows us to formulate iteration problems where the total number of steps
is not known in advance. For example, suppose we want to print a “3-to-n table where n is the
smallest integer such that

Bn − An ≤ 0.0001.

We know that such an n exists because An and Bn each converge to π as n increases.

One solution would be to use a for-loop with a large, “safe” upper bound and an if inside
the loop body to guard against unwanted printing:

for n= 3:10000

innerA= (n/2)*sin(2*pi/n);

outerA= n*sin(pi/n)/cos(pi/n);

if outerA - innerA > 0.0001

fprintf(’%4d %9.6f %9.6f \n’, n, innerA, outerA);

end

end

36 Chapter 2. Numerical Exploration

But this is a flawed problem-solving strategy for two reasons:

The guessing of a “safe” upper bound may be very difficult in practice. In our example, if
the chosen upper bound is too small, then the table will be too short.

It is inefficient. In our example, once the last line is printed, all subsequent area computa-
tions are superfluous.

What we need is an ability to “jump out” of the iteration as soon as the condition

outerA - innerA > 0.001

is false. The while-loop is designed for this kind of situation and the program Example2 2

highlights this point. Here is how the program works. Before the loop begins, the variables n,
innerA, and outerA are assigned the values 3, A3, and B3 respectively. The condition in the
while statement acts as a guard. If the inner and outer areas differ by more than .001, then the
boolean expression is true and the loop body

fprintf(’%4d %9.6f %9.6f \n’, n, innerA, outerA);

n= n+1;

innerA= (n/2)*sin(2*pi/n);

outerA= n*sin(pi/n)/cos(pi/n);

is executed. This prints a line in the table and updates the triplet of variables n, innerA, and
outerA. Once again the boolean expression in the while statement is evaluated. If it is true, then
the loop body is again executed. From what we know about the problem, eventually the inner
and outer areas will get so close that the condition outerA - innerA >.0.001 is false. When
this happens, the execution of the while-loop terminates and control passes to the final fprintf.

In general,while-loops are structured as follows:

〈Initializations〉
while 〈Boolean Expression〉

〈Fragment to be repeated goes here.〉
end

Note that a for-loop can always be written as a while-loop. For example

for n= 3:6

innerA= (n/2)*sin(2*pi/n);

outerA= n*sin(pi/n)/cos(pi/n);

fprintf(’%4d %9.6f %9.6f \n’, n, innerA, outerA);

end

is equivalent to

2.1. Limits 37

% Example 2 2: Convergence of inner and outer areas.

% Print the column headings

fprintf(’ n\t A(n)\t B(n)\n’);
fprintf(’---------------------------\n’);

% Initialize n, innerA, and outerA

n= 3;

innerA= 3*sqrt(3)/4; % inscribed area

outerA= 3*sqrt(3); % circumscribed area

% Compute and print areas until convergence

while outerA - innerA > .001

fprintf(’%4d %9.6f %9.6f \n’, n, innerA, outerA);

n= n+1;

innerA= (n/2)*sin(2*pi/n);

outerA= n*sin(pi/n)/cos(pi/n);

end

fprintf(’---------------------------\n’);

Output:

n A(n) B(n)

3 1.299038 5.196152

4 2.000000 4.000000

5 2.377641 3.632713

...

174 3.140910 3.141934

175 3.140918 3.141930

176 3.140925 3.141926

38 Chapter 2. Numerical Exploration

n= 3;

while n<=6

innerA= (n/2)*sin(2*pi/n);

outerA= n*sin(pi/n)/cos(pi/n);

fprintf(’%4d %9.6f %9.6f \n’, n, innerA, outerA);

n= n+1;

end

When confronted with an iterative computation, a for-loop is usually appropriate if the number
of iterations is known in advance and the counting is “regular.” Otherwise, the situation calls
for a while loop.

To illustrate another type of counting, let’s modify Example2 2 so that n is repeatedly doubled
instead of incremented:

n=4; outerA= 4; innerA= 2;

while outerA - innerA > 0.00001

fprintf(’%4d %9.6f %9.6f \n’, n, innerA, outerA);

n= 2*n;

innerA= (n/2)*sin(2*pi/n);

outerA= n*sin(pi/n)/cos(pi/n);

end

Notice how n houses the required powers of two which are obtained through repeated doubling
process: n=2*n. The value of n starts out at 4. The first execution of n=2*n replaces this value
with 8. When n=2*n is carried out during the next pass, the“8” becomes a “16”, etc.

The repeated doubling also makes it possible to circumvent the explicit references to sin,
cos, and pi. The idea is to use the half-angle formulae

cos(θ/2) =
√

(1 + cos(θ))/2

sin(θ/2) =
√

(1 − cos(θ))/2

to produce the required sines and cosines. The angles that “show up” during the process are all
repeated halvings of π/4:

n Angle (Radians)
4 π/4
8 π/8
16 π/16
32 π/32
...

...

Since the sine and cosine of π/4 are both 1/
√

2 we obtain Example2 3. Unlike Example2 2 that
uses π, Example2 3 computes π.

2.1. Limits 39

% Example 2 3: Compute pi.

% Print the column headings

fprintf(’\n n\t A(n)\t B(n)\n’);
fprintf(’---------------------------\n’);

% Initialize n, innerA, outerA, and c

n= 4;

innerA= 2; % inscribed area for n=4

outerA= 4; % circumscribed area for n=4

c= 1/sqrt(2); % {cos(pi/4)}

% Approximate pi

while outerA - innerA > .0001

fprintf(’%4d %9.6f %9.6f \n’, n, innerA, outerA);

n= 2*n;

s= sqrt((1-c)/2); % {s = sin(pi/n)}
c= sqrt((1+c)/2); % {c = cos(pi/n)}
innerA= n*s*c;

outerA= n*s/c;

end

Output:

n A(n) B(n)

4 2.000000 4.000000

8 2.828427 3.313708

16 3.061467 3.182598

32 3.121445 3.151725

64 3.136548 3.144118

128 3.140331 3.142224

256 3.141277 3.141750

512 3.141514 3.141632

40 Chapter 2. Numerical Exploration

Problem 2.3. The volume of a pyramid whose base is a unit regular n-gon of radius r and whose height is one
is given by

V (n) =
nr2

6
sin(2π/n).

The volume of a cone whose base is the unit circle and which has height one is given by

V∞ =
π

3
.

Write a program that prints the smallest n so that Vn/V∞ > .99.

Problem 2.4. The area of a triangle whose sides have length a, b, and c is given by

E =
√

µ(µ − a)(µ − b)(µ − c)

where µ = (a + b + c)/2. Thus, the area of an equilateral triangle with a = b = c = 2 is given by

E =
√

3(3 − 2)(3 − 2)(3 − 2) =
√

3.

Let Tk be the triangle with sides a = 2, b = 2 + 1/2k , and c = 2 − 1/2k . As k increases, Tk looks increasingly
like an equilateral triangle and its area is increasingly close to E =

√
3. Write a program that prints the smallest

value of k such that |Ek −
√

3| ≤ 0.0001 where Ek is the area of Tk.

Problem 2.5. Write a program that computes the smallest positive k such that cot(π/2k) > 1000 . Make

repeated use of the half-angle formulae. Here, cot(x) is the cotangent function: cot(x) = cos(x)/ sin(x).

2.2 The Floating Point Terrain

We now turn our attention to the numerical landscape of real numbers. It turns out that floating
point arithmetic is inexact. If we think of the computer as a telescope, then this affects its
resolution. A good astronomer understands the limits of a telescope that is being used to observe
the galaxies. A good computational scientist understands the limits of a computer that is being
used to observe the “numerical versions” of those galaxies.

There are just a handful of things to know and the starting point is the representation of a
numerical value in scientific notation:

x = +.123× 10+3 y = −.1000× 10−05 z = .00000× 1000 .

The fraction part is called the mantissa. It has a sign and length. The mantissas for x, y, and z
have length 3, 4, and 5 respectively. The mantissa is always less than one in absolute value and
for non-zero numbers, the most significant digit is non-zero. The representations x = 1.23×10+2

and x = .0123× 104, are not normalized.

The exponent part of the notation indicates the power to which the base is raised. In the
base-10 examples above, x, y, and z have exponents 3, -5 and 0 respectively. Like the mantissa,
the exponent has a sign and a length.

The representation of real numbers in Matlab, type double, follows the above style. But
there is an added wrinkle: the amount of memory that is allocated for the mantissa and exponent

is fixed and finite. For example, a computer may permit 3-digit mantissas and 1-digit exponents.1

1These are unrealistic parameters but they are good enough to communicate the main ideas. Today’s “stan-
dard” is the IEEE double-precision binary floating point system, which has 53 binary digits in the mantissa and
11 binary digits in the exponent.

2.2. The Floating Point Terrain 41

Here is a list of some numbers and and their floating point representation:

a = 12.3 a = + 1 2 3 + 2

b = .000000123 b = + 1 2 3 − 6

c = −12.3 c = − 1 2 3 + 2

d = 0.0 d = + 0 0 0 + 0

Note that with the limited mantissa length, some numbers can only be stored approximately:

a = 12.34 a = + 1 2 3 + 2

b = 12.37 b = + 1 2 4 + 2

c = π c = + 3 1 4 + 1

The reasonable thing to do if there isn’t enough “room” to store the exact mantissa is to round.
Since 12.37 is closer to .124× 102 than .123× 102, the former value is stored. In case of a tie, we
assume that the computer rounds up.

To drive home the point that the set of floating point numbers is finite, we display the smallest
and the largest positive floating point numbers:

min = .0000000001 min = + 1 0 0 − 9

max = 999000000 max = + 9 9 9 + 9

Some numbers just do not fit at all because the exponent length is too short. For example,
if x = 1234567890 = .1234567890 × 1010, then a 2-digit exponent is required. Likewise, x =
.0000000000999 = .999 × 10−10 cannot be represented because again, two digits are required to
hold the exponent.

A reasonable way to model the addition, subtraction, multiplication or division of two floating
point numbers is as follows:

1. Perform the operation exactly.

2. Put the answer in normalized scientific form.

3. Round the mantissa to the allotted number of mantissa digits.

Thus, the addition of x and y where

x = 12.3 x = + 1 2 3 + 2

y = 5.27 y = + 5 2 7 + 1

proceeds as follows:

• 12.3 + 5.27 = 17.57.

• 17.57 = .1757× 102

42 Chapter 2. Numerical Exploration

% Example 2 4: Explore floating point precision.

fprintf(’\n k 1+1/2^k \n’);
fprintf(’---------------------------\n’);

k= 0;

small= 1;

onePlusSmall= 2;

% Compute (1 + 1/(2^k)) for k=1..., until rounding error occurs

while onePlusSmall ∼= 1

k= k + 1;

small= small/2; % {small = 1/(2^k)}
onePlusSmall= 1 + small;

fprintf(’%4d %.16f\n’, k, onePlusSmall);

end

Output:

k 1 + 1/2ˆk

1 1.5000000000000000

2 1.2500000000000000

3 1.1250000000000000

4 1.0625000000000000

...

49 1.0000000000000018

50 1.0000000000000009

51 1.0000000000000004

52 1.0000000000000002

53 1.0000000000000000

• z= x+y z = + 1 7 6 + 2

A consequence of this model of floating point arithmetic is that rounding errors usually attend
every floating point arithmetic operation. This forces us to depart from the “exact arithmetic”
mindset when developing programs that manipulate real numbers. This is a complicated issue
and we will only be able to scratch the surface in this introductory text. However, with a
few well-chosen examples we can build up an appreciation for the inexactness of floating point
arithmetic.

For example, it is possible for the assignment x= x+y not to change the value of x even if the
value in y is nonzero. In the model floating point system that we have been using, if x = 1.00
and y = .001, then the computed sum of x and y is 1 because 1.001 rounds to 1.00. Example2 4

illustrates this point. The loop terminates as soon as the floating point addition of one and
1/2k is one. Instead of doing “repeated halving” (repeating the assignment small= small/2) to
calculate 1/2k for increasing k, one can use the exponentiation operator “^” in Example2 4.

2.2. The Floating Point Terrain 43

The length of the mantissa defines the precision of the floating point arithmetic. Roughly,
the relative error in a floating point operation is about b−t+1 where b is the base and t is the
length of the mantissa. We refer to b−t+1 as the machine precision. A typical mantissa might
be comprised of 53 base-2 digits. This means that machine precision is about 2−53 ≈ 10−16. In
Matlab, the value of the machine precision, also called machine epsilon, is stored as the built-in
constant eps.

Problem 2.6. Compare the output of the following program with what should be produced in exact arithmetic.
Explain the difference.

% Problem 2 6

b= 2e-17;

c= 1;

sumBC= b + c;

newB= sumBC - c;

fprintf(’b: %.16e %.16e\n’, b, newB);

Problem 2.7. Modify Example2 4 so that instead of the table it prints only the value of the largest k that gives

1 + 1/2k > 1. Hint: remove the fprintf inside the loop, maintain a variable that houses the the “previous” value

of small, and print the value of that variable after the loop terminates.

So far we have spent most of the time discussing the mantissa and what its finiteness implies.
But there are also a couple of things to discuss about the exponent part of the floating point
number. When a floating point operation renders a nonzero answer that is too small to represent,
then an underflow occurs and the result is set to zero. Example2 5 computes 1/2k for increasingly
big k. Eventually, an underflow is produced. At the other end of the scale, a floating point
operation can result in an answer that is too big to represent. This is called floating point

overflow. Overflows produce a special value called Inf. In Matlab, the largest numeric value
is stored in the built-in constant realmax. Analogous to Example2 5 that examines the effect of
repeated halving, Example2 6 performs repeated doubling until floating point overflow occurs.

Problem 2.8. Modify Example2 5 so that only the lines associated with k = 10, 20, 30,etc. are printed.

Problem 2.9. Modify Example2 6 so that instead of printing the table, it just prints the second to last line in the
table. Hint: remove the fprintf inside the loop, maintain a variable that houses the the “previous” value of big,
and print the value of that variable after the loop terminates.

Problem 2.10. Write a program that prints the largest integer n so that x= exp(n) does not assign the value Inf

to the variable x.

44 Chapter 2. Numerical Exploration

% Example 2 5: Explore floating point underflow.

fprintf(’\n 1/2^k \n’);
fprintf(’---------------------------\n’);

k= 0;

small= 1;

% Repeatedly half small--k times until 1/(2^k) underflows

while small ∼= 0

small= small/2; % {small = 1/(2^k)}
k= k+1;

fprintf(’%4d %.16e\n’, k, small);

end

Output:

k 1/2ˆk

1 5.00e-01

2 2.50e-01

3 1.25e-01

4 6.25e-02

...

1072 1.98e-323

1073 9.88e-324

1074 4.94e-324

1075 0.00e+00

2.2. The Floating Point Terrain 45

% Example 2 6: Explore floating point overflow.

fprintf(’\n k 2^k \n’);
fprintf(’-------------------\n’);

k= 0;

big= 1;

% Repeatedly double big--k times until 2^k overflows

while big ∼= Inf

big= big*2; % {big = 2^k}
k= k+1;

fprintf(’%4d %.2e \n’, k, big);

end

Output:

k 2ˆk

1 2.00e+00

2 4.00e+00

3 8.00e+00

4 1.60e+01

...

1021 2.25e+307

1022 4.49e+307

1023 8.99e+307

1024 Inf

46 Chapter 2. Numerical Exploration

2.3 Confirming Conjectures

Number theory is a branch of mathematics that deals with the integers and their properties. Many
number theoretic results can be couched in elementary terms and can be explored by programs
that involve simple iterations. Let us consider the affirmation of the following fact:

If k is a nonnegative integer, then 32k+1 + 2k+2 is divisible by 7.

This means that there is no remainder when we divide 32k+1 + 2k+2 by 7. To acquire an un-
derstanding of any mathematical fact like this, it is best to begin with a few pencil-and-paper
verifications:

k = 0 k = 1 k = 2 k = 3

2k+2 4 8 16 32

32k+1 3 27 243 2187

2k+2 + 32x+1 7 35 259 2219

It is easy to check that the sum of the indicated powers is indeed divisible by 7.

Example2 7 checks the conjecture for k = 0, . . . , 24. Note that the last column of output
reveals the remainder of 2k+2+32k+1÷7 and that it is identically zero for the values k = 0, . . . , 24.
We use intermediate variables p2 and p3 to store the terms involving the powers of 2 and 3
separately to facilitate our discussion below. Notice the use of a comment at the “top” of the
for loop for defining the important relationship of the variables in the loop.

If we increase the loop bound to 25, then an error occurs even as the program runs to
completion. What goes wrong? At first glance, one may think that an overflow occurs because
the sum s becomes too big to be stored. However, some simple checks reveal that at k = 25,
p3 ≈ 2 × 1024 while the largest possible real value is many times the magnitude of p3 (realmax
≈ 10308). Therefore overflow is not the cause of the error—another kind of error occurs before the
sum s gets large enough to cause an overflow. The real reason for the error is that p2 becomes
negligible relative to p3 as k becomes “large”! At k = 25, p2+p3 in floating point arithmetic gives
a result that is different from the value of p2+p3 in exact arithmetic. Review §2.2 to see the more
detailed explanation of this loss of accuracy in floating point arithmetic using our toy floating
point model with a 3-digit mantissa and 1-digit exponent.

Example2 7 does not prove anything. It merely confirms a few special cases cases of a general
result. In a research context, a mathematician may choose to run an experiment like this before
investing time in a rigorous analytical proof of a general result.

Problem 2.11. Modify Example 2 7 to verify the conjecture for as many k as possible without assuming k = 24
to be the upper bound. I.e., your program should find the largest k that can be used. Hint: use a while loop and
think about what the stopping condition should be given the inaccuracy of floating point arithmetic as discussed
above.

2.3. Confirming Conjectures 47

% Example 2 7: Confirm that 3^(2n+1)+2^(n+2) is divisible by 7 for n=0..24.

fprintf(’\n n 3^(2n+1) + 2^(n+2) Remainder\n’);
fprintf(’---\n’);

% Verify conjecture for n = 0..24

for n= 1:24

% {s = p2 + p3 = 2^(n+2) + 3^(2*n+1)}
p2= 2^(n+2);

p3= 3^(2*n+1);

s= p2 + p3;

fprintf(’%2d %24.0f %11d \n’, n, s, mod(s,7));

end

Output:

n 3ˆ(2n+1) + 2ˆ(n+2) Remainder

0 7 0

1 35 0

2 259 0

3 2219 0

...

21 328256967394545434624 0

22 2954312706550850387968 0

23 26588814358957535526912 0

24 239299329230617593249792 0

48 Chapter 2. Numerical Exploration

Problem 2.12. The integer next above (
√

3 + 1)2n is divisible by 2n+1. Write a program that confirms this for
n = 1, . . . , 6.

Problem 2.13. The product of three consecutive whole numbers is exactly divisible by 504 if the middle one is
the cube of a whole number. Verify this for the triplets (n3 − 1, n3, n3 + 1) with n = 2, . . . , 10.

Problem 2.14. Let an be the n-th non-perfect square among positive integers. Thus, a1 = 2, a2 = 3, a3 = 5,
etc. For n = 1 to 10000, confirm that an = n + round(

√
n).

Problem 2.15. Let n be a positive integer and let b(n) be the minimum value of k + (n/k) as k is allowed to
range through all positive integers. It can be shown that b(n) and

√
4n + 1 have the same integer part. Confirm

this for all n ≤ 1000. Hint: You can compute b(n) without a loop.

Problem 2.16. There are at least seven positive integers x that make x(x + 180) the square of an integer. Write
a program that confirms this conjecture.

Problem 2.17. Write a program that reads in a positive integer q and prints a list of all powers of q that are less

then or equal to realmax. Organize the computation so that integer overflow does not occur.

2.4 Interactive Frameworks

In the preceding examples and problems, the loops execute without human intervention. Indeed,
that is the power of the loop concept, for it makes it possible to specify a very extensive calculation
with just a few lines of code. However, loops have an important role to play in the design of
interactive frameworks that can be used to test computational ideas before they are encapsulated
in “serious code.”

To illustrate this, let us pretend that sqrt is not available and that we want to develop a
method for computing

√
a where a is a positive real number2. Here is our idea. Think of the

√
a

problem as the problem of producing a sequence of increasingly square rectangles each of which
has area a. If x is an estimate of

√
a, then we associate with x a rectangle with base x and height

a/x. Our geometric intuition tells us that
√

a is in between x and a/x and so we conjecture that

xnew =
1

2

(

x +
a

x

)

is a better approximation to
√

a. Here is a fragment that applies this refinement idea two times
after prompting for a and an initial guess for its square root:

a= input(’\nEnter a positive real number: ’);

x= input(’Enter an initial guess for the square root: ’);

x= (x+(a/x))/2;

x= (x+(a/x))/2;

absoluteError= abs(x-sqrt(a));

2What we are about to develop is in fact the root extraction method used by sqrt.

2.4. Interactive Frameworks 49

relativeError= absoluteError/sqrt(a);

fprintf(’\nComputed root = %f\n’, x);

fprintf(’Absolute error = %e\n’, absoluteError);

fprintf(’Relative error = %e\n’, relativeError);

It prints the approximate square root x together with its absolute error |x−√
a| and its relative

error |x −√
a|/√a.

A program that permits the trial of a single example isn’t very handy. Most likely we would
want to test our square root idea on a number of different a-values and to explore how the quality
of the initial guess affects the accuracy of the computed square root. To that end, we can embed
the above fragment in a while loop and obtain an “interactive framework” that supports repeated
testing. See Example2 8.

In the program, anotherEg is a variable whose value is used to determine if another example
is to be run. anotherEg is assigned a value that is of type char. char stands for character and
it refers to a character like “y” or “n”, or “3” or “+”. In short, the value of any keyboard button
may be stored in a char variable. Each of the special character sequences that we have used in
fprintf statements, such as “\n” and “\t”, is treated as a single special character. Notice from
the assignment of anotherEg and from the while condition that character values are enclosed
in single quotes (e.g., ’n’). Note that the character “2” is not the same as the numeric value 2!
If an input statement is used to read in a character value, we add a flag ’s’ after the prompt
message, separated by a comma, as shown in the last statement in the while-loop.

In Example 2 8, the while-loop continues until the user types in the letter n, the “magic
character.” The while loop could also be controlled by comparing anotherEg with ’y’:

while anotherEg = ’y’

With this method of checking, the program terminates unless the “magic character” (n) is struck.
However, this is not such a good thing since keystroke error brings about program termination.

Even with the few examples we see that the quality of our square root “idea” depends strongly
on the quality of the initial guess. The natural thing to do after this brief computational expe-
rience is to go “back to the drawing boards” and figure a way to improve upon the method. A
better initial guess or an increase in the number of refinements might be the recommended course
of action.

The interactive framework used above is quite general. To explore some computational idea,
you need only “fill in” the following template:

50 Chapter 2. Numerical Exploration

% Example 2 8: Test a method for computing square roots

anotherEg = ’y’; % Continue execution if anotherEg=’y’

% Loop until the user quits the program

while anotherEg = ’n’

a= input(’\nEnter a positive real number: ’);

x= input(’Enter an initial guess for the square root: ’);

x= (x+(a/x))/2;

x= (x+(a/x))/2;

absoluteError= abs(x-sqrt(a));

relativeError= absoluteError/sqrt(a);

fprintf(’\nComputed root = %f\n’, x);

fprintf(’Absolute error = %e\n’, absoluteError);

fprintf(’Relative error = %e\n’, relativeError);

anotherEg = input(’\nAnother example (y/n)? ’,’s’);

end

Output:

Enter a positive real number: 100

Enter an initial guess for the square root: 5

Computed root = 10.250000

Absolute Error = 2.500000e-01

Relative Error = 2.500000e-02

Another example? (y/n)? y

Enter a positive real number: 100

Enter an initial guess for the square root: 9

Computed root = 10.000153

Absolute Error = 1.534684e-04

Relative Error = 1.534684e-05

Another example? (y/n)? n

2.4. Interactive Frameworks 51

% Interactive framework

% 〈Description of the computational idea〉

anotherEg = ’y’;

while anotherEg ∼= ’n’

〈A fragment to be tested including fprintf’s〉

anotherEg= input(’Another example? Enter y (yes) or n (no) ’,’s’);

end

Problem 2.18. A sphere with radius 1 has volume equal to 4π/3. How long must the edge of a cube be so that
it has the same volume? Use the interactive framework. Do not make a direct calculation of the cube root (i.e.,
raise a number to the power of 3 or -3).

Problem 2.19. Let a, b, and c be real numbers not all zero. How small can you make the quotient

Q =

√
a2 + b2 + c2

|a| + |b| + |c|
Use the interactive framework. Do not make any direct calculation of the square root or the square.

Problem 2.20. Use the interactive framework to estimate the area of the largest rectangle whose 4 vertices are

on the curve defined by x4/19 + y4/17 = 1? Note: f= sqrt(sqrt(z)) assigns the value of z1/4 to f.

