
Chapter 1

From Formula to Program

§1.1 A Small Example
Program structure, comments, variables, names, types, input, printing and for-

matting messages with fprintf, the assignment statement.

§1.2 Sines and Cosines
Fragments, assertions, overwriting, syntactic errors, run-time errors, built-in func-

tions, sqrt, sin, cos, arctan

§1.3 Max’s and Min’s
if-else, boolean expressions, relational operators, compound statements, top-

down development of nested ifs, logical operators

§1.4 Quotients and Remainders
mod, if-elseif-else, fix, round

We grow up in mathematics thinking that “the formula” is a ticket to solution space. Want the
surface area of a sphere? Use

A = 4πr2.

Have the cosine of some angle θ ∈ [0, π/2] and want cos(θ/2)? Use

cos(θ/2) =

√

1 + cos(θ)

2
.

Want the minimum value µ of the quadratic function q(x) = x2 + bx + c on the interval [L, R]?
Use

µ =

q(−b/2) if L ≤ −b/2 ≤ R

min{q(L), q(R)} otherwise
.

Want to know if year y is a leap year? Use the rule that y is a leap year if it is a century year
divisible by 400 or a non-century year divisible by 4.

Sometimes the application of a formula involves a simple substitution. Thus, the surface area
of a one-inch ball bearing is 4π(1/2)2 = π square inches. Sometimes we have to check things
before choosing the correct “option” within a formula. Since 0 ≤ 3 ≤ 10, the minimum value of

1

2 Chapter 1. From Formula to Program

q(x) = x2−6x+5 on the interval [0,10] is q(3) = −4. Sometimes we must clarify the assumptions
upon which the formula rests. Thus, if a century year means something like 1400, 1500, and 2000,
then 1900 was not a leap year.

Writing programs that use simple formulas like the above are a good way to begin our in-
troduction to computational science. We’ll see that the mere possession of a formula is just the
start of the problem-solving process. The real ticket to solution space, if you travel by computer,
is the program. And that’s what we have to learn to write.

1.1 A Small Example

A program is a sequence of instructions that can be carried out by a computer. Let us write a
program that solicits the radius of a sphere and then computes and prints its surface area. The
surface area of a sphere that has radius r is given by

A(r) = 4πr2.

There would be little more to say if we were to solve this problem “by hand.” Indeed, we would
(1) get r, (2) plug into the formula, and (3) write down the result. However, if the computer is
to do the same thing, then each of these steps becomes more involved:

% Example 1 1: Compute the surface area of a sphere

% A: surface area of the sphere

% r: radius of the sphere

r= input(’Enter the radius: ’);

A= 4*3.14159*r*r;

fprintf(’Surface area is %7.2f.\n’, A);

This program, like all the others in this text, is written in a programming language called
Matlab. Matlab is a programming language and tool that is widely used in engineering,
science, and mathematics.

As with natural languages such as English and Japanese, programming languages have rules
of syntax that must be obeyed. Let us begin the process of learning the grammar of Matlab by
dissecting the above program.

A program is very much like a recipe: it is a step-by-step description of some “cooking”
process. A program has a name, just like a recipe has a name. All names in Matlab including
names of programs must satisfy a number of rules:

• A name must begin with a letter.

• Each character in the name must be either a letter, a digit, or an underscore ().

• Only the first 31 characters of the name are significant; the remaining characters of the
name are ignored.

1.1. A Small Example 3

• A name should not be a reserved word. A reserved word is one that has a special meaning
in Matlab and should not be used in programs except as intended according to the special
meaning.

Thus, sphereArea, area, and Example1 1 are valid names whereas E-1 and 1E are not. The
computer file containing a Matlab program has a filename consisting of the program name and
the extension .m. Therefore, a Matlab program Example1 1 has the filename Example1 1.m.
A Matlab program file is also called an M-file. The list of Matlab reserved words will be
developed as we go along.

The choice of names in your program is extremely important. A recipe has a name, and we
expect the recipe name to be descriptive and to represent the item being cooked. Similarly, a
program name should be meaningful and descriptive. You wouldn’t name a recipe for an apple
pie “broccoli bake” or “food,” so don’t name your programs “programA,” or “B” (unless they
actually have to do with the letters A or B)!

The simple program above (Example 1 1) has just two parts:

〈Comment〉
〈Action〉

The “comment part” is a remark on the program; the “action part” contains the actual
instructions for the computer to carry out. Notice our “angle bracket” notation. Words enclosed
in the angle brackets 〈like this〉 are used in the spirit of “fill-in-the-blank.” In effect we are saying
that for the time being, be content with the word description—details are being hidden or will
be filled in later. Words typeset in this style are actually part of the program.

A remark that begins with the percent character % is called a comment. Comments are
essential for program readability, although they are not executed by the computer. A lead
comment should always be included to describe in a few words what the program does. Thus,
upon reading

% Example 1 1: Compute the surface area of a sphere

we know that the program Example1 1 deals with the surface area of a sphere. The writing of
good lead comments is important because it is unreasonable to expect the reader to deduce the
function of a program by stepping through its instructions.

A comment begins with the % character and ends with the end of the line. Long comments
can be spread over several lines where each line begins with a % character. Thus, we could begin
Example1 1 as follows:

% Example 1 1: Compute the surface area of a sphere.

% See page 326 of ‘‘Calculus’’ by G. Strang.

The two comments that follow the lead program comment explain some names that are used
in the program.

% A: surface area of the sphere

% r: radius of the sphere

4 Chapter 1. From Formula to Program

10

r

Figure 1.1 Visualizing A Variable

These comments are sometimes called a variable dictionary because they explain to the reader
what those names represent in the program. In larger programs, you may want to put variable
definitions at judicious points in the program, not at the beginning. This will be illustrated in
later programs.

To learn more about variables, we now consider the “action part” of the program in detail. In
Example 1 1, r and A are variables that hold the values of the radius and the area, respectively.

r= input(’Enter the radius: ’);

A= 4*3.14159*r*r;
...

If you compute the surface area of a sphere with pencil and paper, then the numbers that arise
during the solution process are just written down or perhaps kept in your head. You do not think
particularly hard about where the intermediate results are recorded. But when the computer
calculates the solution, the numbers must have a specific place where they can be stored and
retrieved for later use.

For example, the values for the acquired radius and the computed surface area are held in
the variables r and A respectively. It is useful to think of variables as “boxes.” In everyday life,
boxes are often tailored to hold specific items. The same is true of the variables in a program. A
variable stores a value of a specific type. As you will learn, variables in a program can hold real
numbers, integers, true-false values, individual characters, strings of characters, and many other
kinds of data. In the Matlab programming language, a variable is created simply by putting
a value into the variable. We will examine the process of putting a value in a variable shortly.
The type of a variable is the type of the value that is put into the variable. In Example1 1, two
variables are used. These are A and r and they both have type double (which stands for double
precision floating point number). This means that they can store real numbers like 10.6 and
19 × 103 or integers like -6 and 0. In Matlab computing, integers are treated as real numbers.
You can visualize a variable as a named box that holds a value as depicted in Figure 1.1.

We now consider the “action part” of Example1 1 line by line. It consists of three statements
to be executed by the computer:

r= input(’Enter the radius: ’);

A= 4*3.14159*r*r;

fprintf(’Surface area is %7.2f.\n’, A);

1.1. A Small Example 5

Enter the radius:

Figure 1.2 Output In Command Window

The statement

r= input(’Enter the radius: ’);

is an assignment statement, which has a lefthand side and a righthand side separated by the
assignment operator “=” (the equal sign). In an assignment statement, the result of the action
on the righthand side is put into, or assigned to, the variable stated on the lefthand side. The
action on the righthand side of this statement uses the Matlab reserved word input to prompt
the user for a value and then read the the value entered from the keyboard. The message “Enter
the radius:” enclosed in single quotes is displayed in Matlab’s Command Window. See Figure

1.2. After displaying the message, called a prompt because it prompts the user for some action,
program execution holds until the user enters a value. For example, if we respond to the prompt
by typing “10” and then striking the < enter > button, then program execution continues and
the value of 10 is stored in the newly created variable r (the box) as shown earlier in Figure

1.1. We will discuss the semicolons that appear at the end of the statements shortly.

Once the data for the problem is in the computer’s memory, we are ready to invoke the
A = 4πr2 formula:

A= 4.0*3.14159*r*r;

Again, this is an assignment statement. The righthand side is a recipe for a numerical value.
The left hand side names the variable where the computed value is to be stored. Figure 1.3

shows the status of r and A after the assignment.

Notice that in an assignment statement, the action on the righthand side is executed first
before the resulting value is stored in the variable on the lefthand side. Although it is tempting
to read the assignment as “A equals 4πr2,” it is much more accurate to say that “A is assigned
the value of 4πr2.” This is because the assignment is an action, not a statement about equality.
This point is clarified later.

Literal values like “4” and “3.14159” in an arithmetic expression may be entered in different
ways. For example, the expressions 4*3.14159 and 4.0*3.14159 are the same. A scientific
notation is also available:

6 Chapter 1. From Formula to Program

10

r

1256.64

A

Figure 1.3 Assignment to A

A= 0.04E+2*3.14159*r*r;

although in this case, it is not a convenience.

The assignment statement under consideration has a particularly simple arithmetic expression:
4*3.14159*r*r. Asterisks are used to designate multiplication. An equivalent expression using
the power operator “^” is 4*3.14159*r^2. What happens if the arithmetic expression is so long
that we wish to write it in several lines? Use an ellipsis “. . .” to indicate that the statement
continues on the next line. Therefore, the multi-line statement

A= 4*3.14159* . . .
*r*r;

and the single-line statement

A= 4*3.14159*r*r;

will perform the same calculation and assignment.

Because the arithmetic expression is a recipe for a value, it is essential that all the ingredients
are present. If we try to calculate the surface area before acquisition of the radius r, e.g.,

A= 4*3.14159*r*r;

r= input(’Enter the radius: ’);

then the program would be wrong. The order of statements in a program body is very important.
Notice the difference between accessing a variable and creating a variable. In the statement

A= 4*3.14159*r*r;

the program needs to access the value in r on the righthand side in order to do the calculation.
Therefore variable r must exist prior to this statement. On the other hand, variable A on the
lefthand side is created using the value that results from the righthand side calculation—variable
A needs not exists prior to this statement.

The last action to be performed is the printing of the result. Matlab provides several ways
to print text. The fprintf command allows us to print messages that include the values stored
in variables. The statement

1.1. A Small Example 7

Enter the radius: 10

Surface area is 1256.64.

Figure 1.4 Output In Text Window

fprintf(’Surface area is %7.2f.\n’, A);

prints a line of text that has two components, a message and a number stored in a variable. See
Fig.1.4

A message is printed exactly as entered between the single quotation marks in the fprintf

statement except for the character sequences that begin with the percent character “%” or with
the back slash character “\”. The character sequence %7.2f in the above fprintf statement is
a place-holder for the value stored in the variable listed after the quoted text, variable A. The
place-holder sequence %7.2f contains formatting information: print the value using 7 “spaces” in
total with 2 decimal places for a floating point number. One may choose to leave out the space
formatting information. For example, the character sequence %f will substitute in the value (of
the variable name given later) as a floating point number using as many spaces as necessary and
with the default number of decimal places, four or six in most systems. We will introduce more
substitution sequences in later examples. The character sequence \n is the “new line” character,
sometimes called the carriage return (think about a typewriter). Any text that follows the new
line character will be printed in a separate line. For example, if we change the fprintf statement
to be

fprintf(’Surface area is %f.\nCool!\n’, A);

the printed output will be

Surface area is 1256.636000.

Cool!

Choosing a format so that the output looks nice requires some care. It is typically a detail
that should not be addressed until after a preliminary version of the program is working, for then
you know the size of the numbers involved and can apply sensible formats. Another consideration
is the precision of the computer’s arithmetic. This is discussed in the next section.

Before we discuss the semicolon that appears at the end of each executable statement in our
program, let’s look at the entire program and its output as shown in the box above. Italics are
used to indicate user-responses to prompts from the program. We will use such boxes to show
programs and their sample output throughout this book.

8 Chapter 1. From Formula to Program

% Example 1 1: Compute the surface area of a sphere

% A: surface area of the sphere

% r: radius of the sphere

r= input(’Enter the radius: ’);

A= 4*3.14159*r*r;

fprintf(’Surface area is %7.2f.\n’, A);

Sample output:

Enter the radius: 10

Surface area is 1256.64.

We use a semicolon “;” at the end of a statement to suppress Matlab’s automatic value
display behavior. If we do not use the semicolons in our program, the program executes as we
have already discussed, but after completing each statement Matlab will display the value of
the variable created in that statement:

Enter the radius: 10

r =

10

A =

1.2566e+03

Surface area is 1256.636000.

Notice that the fprintf and input statements are supposed to display text, therefore they display
text as coded in the statements whether we use semicolons at the end of the statements or not.
Since most programs tend to be longer than a few statements, use semicolons to suppress the
automatic display in order to keep the output from getting cluttered up. Make a habit of ending
each statement with a semicolon.

We give another example program to clarify the statements just learned. Example1 2 solicits
a radius r (assumed to be in miles) and a modification ∆r (assumed to be in inches) and prints
the increase in spherical surface area (in square miles) when the radius is increased from r to
r + ∆r.

Instead of using a variable dictionary (comments) near the top of the program, we define each
variable as it is introduced in the program using a comment. The meaning of the variables r

and delta are clearly given by the text prompts of the input statements so additional comments
are not necessary for these variables. As you write more complex programs, you will find it
convenient to define a variable at the place where it is created. For a large program that has
multiple sections, use a variable dictionary for important variables at the top of each section.

A new feature of Example1 2 is the use of the built-in constant pi. The number π is so
important that it is incorporated in the Matlab language. When pi appears in an arithmetic
expression, its value as defined by Matlab is substituted.

Notice the use of parentheses in the assignment

1.1. A Small Example 9

% Example 1 2: Explore how the surface area of a sphere

% changes with an increase in the radius.

r= input(’Enter radius r in miles: ’);

delta= input(’Enter delta r in inches: ’);

newr= r + ((delta/5280)/12); % new radius in miles

A= 4*pi*r^2; % original surface area

newA= 4*pi*newr^2; % new surface area

incr= newA - A; % increase in area

fprintf(’Increase in area (mile^2) is %f.\n’, incr);

Sample output:

Enter radius r in miles: 4000

Enter delta r in inches: 10

Increase in area (mile^2) is 15.866630.

newr= r + ((deltar/5280)/12);

It turns out that

newr= r + deltar/5280/12;

renders the same value because of the rules of precedence. These are rules that determine the
order of operations in an arithmetic expression. Unless overridden by parentheses, multiplicative
operations (∗, /) are performed before all additive operations (+,−). A succession of multi-
plicative operations or a succession of additive operations are performed left to right. Thus,
a= 1/2/3/4 is equivalent to a= ((1/2)/3)/4 and different from a= 1/(2/(3/4)). Always use
parentheses in ambiguous situations.

Even though the above programs are short and simple, they reveal a number of very important
aspects about errors in the computational process. Suppose that the program is used to compute
the surface area of the Earth. To begin with, there is a model error associated with the assumption
that the Earth is a perfect sphere. In fact, the shape of the Earth is better modeled by an oblate
spheroid, i.e., an ellipse of revolution. Second, if we use the radius value r = 3960 and if this
value is determined experimentally, say by a satellite measurement, then there is undoubtedly
a measurement error. Perhaps the satellite instruments are sensitive to four significant digits
and that the “real” Earth has a radius of 3960.2 miles. Third, there is the mathematical error
associated with the approximation of π. Finally, there is the roundoff error associated with
the actual computation A= 4*pi*r*r. Computers do not do exact real arithmetic. Just as the
division of 1 by 3 on your calculator produces something like .333333 and not 1/3 exactly, so may
we expect the computer to make a small error every time an arithmetic operation is performed.
This is discussed in §2.3.

A great deal of computing experience is required before the interplay between these factors
can be fully appreciated. One of our goals is to communicate these subtleties and to build your
intuition about them.

10 Chapter 1. From Formula to Program

Problem 1.1. Assume that the Earth is a sphere with radius 4000 miles. By running Example1 2 three times,
determine the increase in surface area if the Earth is uniformly paved with 1, 5, and 10 inches of cement. (Don’t let
this happen in real life!) Next modify Example1 2 so that it also computes the approximate surface area increase
via the following formula:

∆A = A(r + ∆r) − A(r) ≈ 8πr∆r.

This follows the derivative of A(r) can be approximated very well by a divided difference if ∆r is very much
smaller than r:

A′(r) ≈ A(r + ∆r) − A(r)

∆r
.

Compare the two methods using the following choices for r and ∆r:

r ∆r
4000 1
4000 5
4000 10
4000 1000

Problem 1.2. The surface area of an oblate spheroid such as the Earth is given by A = 4πr1r2 where r1 is

the equatorial radius and r2 is the polar radius. Write a program that reads in these two radii and computes the

difference between 4πr1r2 and 4π((r1 + r2)/2)2 . Use the Earth data r1 = 3963, r2 = 3957.

1.2 Sines and Cosines

Let us continue the discussion of formulas and programs using as examples some well-known
trigonometric identities. Our first calculations involve the half-angle formulae for cosine and sine:

cos(θ/2) =
√

(1 + cos(θ))/2 0 ≤ θ ≤ π/2.

sin(θ/2) =
√

(1 − cos(θ))/2 0 ≤ θ ≤ π/2.

These recipes can be used to compute sines and cosines of various angles from a sines and
cosines of other angles. For example, since cos(π/4) = 1/

√
2 we can use the half-angle formula

for sine to compute sin(π/8):

a= 2;

c= 1/sqrt(a); (1.2.1)
s= sqrt((1 - c)/2);

fprintf(’sin(pi/8) is %f\n’, s);

An excerpt from a program like this is called a fragment. We use fragments to communicate new
programming ideas whenever the inclusion of the whole program burdens us with unnecessary
detail. Right now, we are not interested in program comments or user input. The focus is on the
assignment statement and the fragment illustrates some new features about this construct.

1.2. Sines and Cosines 11

The fragment makes use of sqrt, one of many built-in functions that are part of Matlab. If
a is a variable that contains a numeric value, then sqrt(a) returns the value of its square root.
The sqrt function can accept literals and so it is legal to replace the first two assignments with

c= 1/sqrt(2);

More generally, sqrt can be applied to any arithmetic expression, e.g.,

c= 1/sqrt(2);

s= sqrt((1-c)/2);

We can “collapse” the fragment even further:

s= sqrt((1-(1/sqrt(2)))/2)

But now the role of the half angle formulae is obscured by all the parentheses. Avoid “dense”
one-liners like this. It is better to spread the computation of over a few lines thereby highlighting
some of the important intermediate results that arise during the course of computation.

The little cosine/sine computation gives us the opportunity to clarify three different types of
error. If we type

a= 2;

c= 1/sqrt(a);

s= sqrt((1 - c/2);

fprintf(’sin(pi/8) is %f\n’, s);

instead of (1.2.1), then a syntactic error results because there are unbalanced parentheses in the
third assignment statement. Syntactic errors are grammatical violations in a program. When
a Matlab program is executed, Matlab checks for syntactic errors in a statement, a step
called compilation, before executing that statement. If an error is found in a statement, program
execution terminates at that statement with an error message.

Even if a program contains no syntactic errors, it may not run to completion because of a
run-time error. For example,

a= 0;

c= 1/sqrt(a);

s= sqrt((1 - c)/2);

fprintf(’sin(pi/8) is %f\n’, s);

is syntactically correct, but the division in the second statement breaks down because the divisor
is zero.

In addition to syntactic and run-time errors, there are programmer errors:

a= 2;

c= 1/sqrt(a);

s= sqrt(1 - c/2);

fprintf(’sin(pi/8) is %f\n’, s);

12 Chapter 1. From Formula to Program

.707107

c

c= sqrt((1+c)/2)

-
.923880

c

Figure 1.5 Overwriting

This compiles and runs to completion, but the desired output is not produced. The deleted
parentheses in the assignment to s means that the program is computing

√

1 − (c/2) instead

of
√

(1 − c)/2. Programmer errors are often the hardest to detect because the editor and the
compiler are not there to point out our mistakes. Moreover, we may be so excited that our
program actually runs that we overlook its correctness!

The issue of program correctness is particularly complex, especially as programs get long.
One of our goals is to develop problem-solving strategies that are organized in such a way that
we can be confident about a program’s correctness. 1

Let us move on to a more complicated example. We can compute sin(π/16) by repeated
application of the half-angle formulae:

c= 1/sqrt(2); % {c = cos(pi/4)}
c= sqrt((1+c)/2); % {c = cos(pi/8)}
s= sqrt((1-c)/2); % {s = sin(pi/16)}
fprintf(’sin(pi/16) is %f\n’, s);

The inclusion of comments helps us trace what happens as the computation unfolds. These
cryptic, mathematical comments are called assertions. After the assignment of 1/

√
2 to c we can

assert that c = cos(π/4). By convention, assertions are enclosed in braces “{}.”

The next assignment computes cos(π/8) from cos(π/4) using the cosine half-angle formula.
As usual, to the right of the assignment operator “=” is a recipe, or more precisely, an arithmetic
expression. To the left of the assignment symbol is the name of the variable where the result is
to be stored, in this case, c. Thus, even though c is involved in the expression, it is the “target”
of the operation. First, the righthand side of the assignment statement is evaluated, using the
current value of c, to a single value. Then this new value is assigned to variable c, overwriting the
previous value. Figure 1.5 shows how we should visualize the update of c’s value. The current
contents of a variable can be overwritten with a new value. The old value is “erased” much as
the current contents of a CD are erased during rewriting.

Finally, the sine is computed and the values displayed in Figure 1.6 are displayed.

These two values could be computed directly by using the built-in functions sin and cos.
These functions assume input values in radians. Thus, since pi houses the value of π,

1Just being confident in a program’s correctness does not mean that we can guarantee its correctness. That’s
a very mathematical exercise and beyond the scope of this introductory text.

1.2. Sines and Cosines 13

.923880

c

.195090

s

Figure 1.6 The Final Cosine/Sine Values

s= sin(pi/16);

is mathematically equivalent to

c= 1/sqrt(2);

s= sqrt(1-c/2)

Not surprisingly, there is often more than one way to compute the same thing.

Next we consider the double angle formulae:

cos(2θ) = cos2(θ) − sin2(θ)

sin(2θ) = 2 sin(θ) cos(θ)

The program Example1 3 solicits an angle and then computes the sine and cosine of the double
angle. Note that the input angle is given in degrees and is then converted to radians2. This is
necessary because sin and cos assume radian arguments.

After the conversion to radians, the cos(θ) and sin(θ) are computed and stored in c and s

respectively. Using the double angle formulae, these values are replaced by cos(2θ) and sin(2θ).
Note that the variable ctemp is necessary to hold cos(θ). The fragment

c= cos(theta);

s= sin(theta);

c= c^2 - s^2; % {cos(2*theta)}
s= 2*c*s; % {sin(2*theta)}

does not assign sin(2θ) to s since the value of c used in the last assignment is cos(2θ) and not
cos(θ).

For both cosine and sine, the absolute value function abs is used to compute the discrepancy
between the double angle method and direct calculation using the built-in sin and cos functions.
The results are then displayed.

We introduce two new character sequences in the fprintf statement. In the statement

2180 degrees = π radians

14 Chapter 1. From Formula to Program

% Example 1 3: Demonstrate the double angle formulae for sine and cosine.

a= input(’Enter angle (degrees): ’);

theta= a*pi/180; % the angle in radians

c= cos(theta);

s= sin(theta);

ctemp= c;

c= c∧2 - s∧2; % {cos(2*theta)}
s= 2*s*ctemp; % {sin(2*theta)}

% Errors in using the double angle formulae

cosError= abs(c-cos(2*theta));

sinError= abs(s-sin(2*theta));

fprintf(’cos(2*theta) = %.6f\t error = %.1e\n’, c, cosError);

fprintf(’sin(2*theta) = %.6f\t error = %.1e\n’, s, sinError);

Sample output:

Enter angle (degrees): 30

cos(2*theta) = 0.500000 error = 1.1e-16

sin(2*theta) = 0.866025 error = 0.0e+00

fprintf(’sin(2*theta) = %.6f\t error = %.1e\n’, s, sinError);

the character sequence \t represents a tab, i.e., a sequence of usually two to eight spaces. The
substitution sequence %.1e specifies that the value of the variable will be printed in “scientific
notation” with one decimal place. So far, we have introduced the substitution sequences %f for
floating point number and %e for scientific notation. What if you don’t know in advance which
format to use? You can use the substitution sequence %g, which stands for general. This leaves
the system to determine which format to use. In the above statement, there are two substitution
sequences and two variables are listed. The variable values are substituted into the message to be
printed in the order in which they are are listed. Thus, the value in the first variable, s, is printed
using the first substitution sequence %.6f while the value in the second variable, sinError, is
printed using the sequence %.1e.

As a final example, suppose variables x and y house positive real values x and y and that θ
is defined by tan(θ) = y/x. Our goal is to assign the values cos(θ) and sin(θ) to variables c and
s. One approach is to use the built-in function arctan.3 The program fragment

theta= arctan(y/x);

c= cos(theta);

s= sin(theta);

makes the required assignments to c and s. Alternatively, from Figure 1.7 we also have

3Recall that if u = arctan(v), then tan(u) = v.

1.3. Max’s and Min’s 15

�
�

�
�

�
�

�
�

�
�

θ

r

x

y

Figure 1.7 sin(θ) = y/r and cos(θ) = x/r

r= sqrt(x*x + y*y);

c= x/r;

s= y/r;

Again we see that there is more than one way to compute the same thing. This is especially true
in the trigonometric area where there are so many identities to work with.

Problem 1.3. Modify Example1 3 so that it applies the double angle formulae twice to produce the sine and cosine
of 4θ where θ is the input angle. Print the discrepancies from the values sin(4*theta) and cos(4*theta).

Problem 1.4. Given that cos(60o) = 1/2 and cos(72o) = (
√

5 − 1)/4, write fragments that print the following
values: (a) sin(18o), (b)cos(3o), and (c) sin(27o). Do not make use of the built-in functions sin, cos, or arctan.
Use the half-angle formulae and the identities

cos(θ1 + θ2) = cos(θ1) cos(θ2) − sin(θ1) sin(θ2)

sin(θ1 + θ2) = cos(θ1) sin(θ2) + sin(θ1) cos(θ2)

cos(−θ) = cos(θ)

sin(−θ) = − sin(θ)

1.3 Max’s and Min’s

Let us pose some questions about the behavior of the the quadratic function

q(x) = x2 + bx + c

on the interval [L, R]:

Q1: Which is smaller, q(L) or q(R)?

Q2: Does the derivative q′(x) have a zero in the interval [L, R]?

Q3: What is the minimum value of q(x) in [L, R]?

16 Chapter 1. From Formula to Program

To answer each question it is necessary to make a comparison of values and then branch to an
appropriate course of action. The if construct is required to handle this kind of situation.

Consider the first problem where we want to decide whether q(x) is larger at x = L or at
x = R. Assume that L, R, b, and c are initialized real variables and that L ≤ R. Here is a
fragment that prints a message based upon the comparison of q(L) and q(R):

% Fragment A

qL= L^2 + b*L + c;

qR= R^2 + b*R + c;

if qL < qR (1.3.1)
fprintf(’q(L) < q(R)’);

else

fprintf(’q(L) >= q(R)’);

end

The fragment begins by storing the value of q(L) and q(R) in the variables qL and qR respectively.
Then a comparison is made. If the value of qL is smaller than the value qR, then the message

q(L) < q(R)

is printed. Otherwise,

q(L) >= q(R)

is printed.

Alternatives like this are very common in computing and the if-else construct is designed
to navigate the “fork in the road”:

if 〈Condition〉
〈Something to do if the condition is true.〉

else

〈Something to do if the condition is false.〉
end

Three reserved words are associated with this statement: if, else, and end. The condition is
called a boolean expression or logical expression. Just as arithmetic expressions produce numbers,
so do boolean expressions produce true-false values. Once qL and qR have been assigned values,
the boolean expression qL < qR is either true or false. The symbol < stands for “less than” and
is one of the several relational operators listed in Figure 1.8. Notice that the “equal to” relation
has the double equal sign “==” symbol. There are often several ways to organize an if-else
statement. For example, the fragment

% Fragment B

qL= L^2 + b*L + c;

qR= R^2 + b*R + c;

if qL >= qR

1.3. Max’s and Min’s 17

Operator Meaning
> greater than

>= greater than or equal to
== equal to
∼= not equal to
<= less than or equal to
< less than

Figure 1.8 Relational Operators

fprintf(’q(L) >= q(R)’);

else

fprintf(’q(L) < q(R)’);

end

is equivalent to Fragment A. If we play with the underlying mathematics, then other possibilities
unfold. For example, since

q(L) − q(R) = (L2 + bL + c) − (R2 + bR + c) = (L2 − R2) + b(L − R) = (L − R)(L + R + b)

we also have

% Fragment C

if (L-R)*(L+R+b) > 0

fprintf(’q(L) > q(R)’);

else

fprintf(’q(L) <= q(R)’);

end

You may “do more than one thing” as a result of a comparison. For example, to handle the
situation

if (L-R)*(L+R+b) > 0

〈Print a message ’q(L) ≥ q(R)’ and compute the slope of q at L.〉
else

〈Print a message ’q(L) < q(R)’ and compute the slope of q at R.〉

you will put two statements under each of the if and else branches:

if (L-R)*(L+R+b) > 0

fprintf(’q(L) > q(R)’);

slope= 2*L + b;

else

fprintf(’q(L) <= q(R)’);

slope= 2*R + b;

end

18 Chapter 1. From Formula to Program

(Recall that the slope of q at x is given by q′(x) = 2x+b.) All the statements under the if branch
will be executed if 〈condition〉 evaluates to true. All the statements under the else branch will be
executed if 〈condition〉 evaluates to false. Notice how we have indented all the statements to be
executed under a certain branch. Always indent sub-structures so that the alteratives (branches)
are visually clear for anyone reading the program.

Sometimes there is “nothing to do” if the comparison in the if is false. In this case, just
delete the else branch. The fragment

qL= L^2 + b*L + c;

qR= R^2 + b*R + c;

if abs(qL-qR) <= 0.001

fprintf(’q(L) is close to q(R)’);

ave= (qL+qR)/2;

end

prints the message
q(L) is close to q(R)

if |q(L) − q(R)| ≤ .001 and assigns the average value to ave. Nothing is done if this boolean
expression is false. Here is the general structure of a simple if-then:

if 〈Condition〉
〈Something to do if the condition is true.〉

end

Now consider the second of the three questions posed above: does the derivative of q(x) =
x2 +bx+c have a zero in the interval [L, R]? Since q′(x) = 2x+b, the zero is given by xc = −b/2.
Let us write a fragment that prints a message indicating whether or not L ≤ xc ≤ R is true. Two
comparisons must be made. We must compare xc with L and xc with R. Only if the comparison
L ≤ xc is true and the comparison xc ≤ R is true may we conclude that xc is in the interval.
Here is a fragment that performs these two checks and prints an appropriate message:

% Fragment D

xc= -b/2;

if (L <= xc) && (xc <= R) % if (L<=xc) AND (xc<=R)

fprintf(’xc is in [L,R]’);

else

fprintf(’xc is not in [L,R]’);

end

The expression

(L <= xc) && (xc <= R)

is a boolean expression and therefore has a value of true or false. This and operation has the
form

〈Boolean Expression〉 and 〈Boolean Expression〉

1.3. Max’s and Min’s 19

a b a && b

false false false
false true false
true false false
true true true

Figure 1.9 The and Operation

a b a || b

false false false
false true true
true false true
true true true

Figure 1.10 The or Operation

It compares two boolean values and returns another boolean value according to the table in
Figure 1.9. Fragment D is equivalent to:

% Fragment E

xc= -b/2;

if (L > xc) || (xc > R) % if (L<=xc) OR (xc<=R)

fprintf(’xc is not in [L,R]’)

else

fprintf(’xc is in [L,R]’);

end

This illustrates the or operation. This logical operation is defined in Figure 1.10. A third
logical operation called the not operation negates a boolean value. The not operator is the tilde
“∼”symbol. See Figure 1.11. Here is another rewrite of Fragment D that uses the not operation:

xc= -b/2;

if ∼((L <= xc) && (xc <= R)) % if NOT((L<=xc)AND(xc<=R))

fprintf(’xc is not in [L,R]’);

else

fprintf(’xc is in [L,R]’);

end

a ∼a

false true
true false

Figure 1.11 The not Operation

20 Chapter 1. From Formula to Program

As a last example, let us compute the minimum value of the function q(x) = x2 + bx + c on
the interval [L, R]. Calling this minimum m, here is the “formula”:

m =

q(xc) if xc ∈ [L, R]

the smaller of q(L) and q(R) if xc is not in [L, R]

This either/or situation calls for an if-else construct:

xc= -b/2;

if (L <= xc) && (xc <= R)

〈The minimum value is q(xc) = −b2/4 + c.〉
else

〈The minimum value is the smaller of q(L) and q(R)〉
end

If the condition is true, then m = -(b^2)/4+c. If the condition is false, then the code necessary
to identify the smaller of q(L) and q(R) involves another if-else:

if (L-R)*(L+R+b)<0

m= L*L+b*L+c;

else

m= R*R+b*R+c;

end

Putting it all together we obtain the program Example1 4. The program shows how if statements
can be nested, i.e., one if statement is contained within another if statement. But notice that
as we developed the program, we never dealt with more than one if at a time. The mission of
the “outer” if is established first without regard to the details of the alternatives. We didn’t
have to think about the “inner” if until the issue of q’s value at the endpoints surfaced. This
is an example of top-down problem solving, a truly essential skill for the computational scientist.
Examples of top-down problem solving permeate the rest of the text.

We mention in closing it takes a while to develop a facility with boolean expressions. Arith-
metic expressions pose no comparable difficulty, because we have had years of schooling in math-
ematics. But through a carefully planned sequence of “boolean challenges”, you will become as
adept with && (and), || (or), and ∼ (not) as you are with “+”, “-”, “*”, and “/”.

Problem 1.5. Modify Example1 4 so that it handles quadratics with a variable quadratic coefficient, i.e., quadrat-

ics of the form q(x) = ax2 + bx + c. Assume a 6= 0.

1.4 Quotients and Remainders

According to the rules of the Gregorian calendar, a year is a leap year if it is divisible by four
with the exception of century years that are not divisible by 400. Thus, 1992 and 2000 are leap
years while 1993 and 2100 are not.

1.4. Quotients and Remainders 21

% Example 1 4: Minimum of x*x + bx + c on [L,R]

b= input(’Enter coefficient b: ’);

c= input(’Enter coefficient c: ’);

L= input(’Enter left end of interval: ’);

R= input(’Enter right end of interval: ’);

% m is minimum of the quadratic on [L,R]

xc= -b/2; % the critical value of the quadratic

if (L<=xc && xc<=R)

m= c - b*b/4;

else % {xc is not in [L,R]}
if ((L-R)*(L+R+b) < 0)

m= L*L + b*L + c;

else

m= R*R + b*R + c;

end

end

fprintf(’min is %f\n’, m);

Sample output:

Enter coefficient b: -5

Enter coefficient c: 6

Enter left end of interval: -10

Enter right end of interval: 10

min is -0.250000

22 Chapter 1. From Formula to Program

% Example 1 5: Leap year calculation

year= input(’Enter year: ’);

if (mod(year,4) ∼= 0)

fprintf(’%d is an ordinary year\n’, year);

else

if (mod(year,100)==0 && mod(year,400) ∼= 0)

fprintf(’%d is an ordinary year\n’, year);

else

fprintf(’%d is a leap year\n’, year);

end

end

Sample output:

Enter year: 1900

1900 is an ordinary year

The leap year “formula” involves integer arithmetic. Integer arithmetic is not quite the same
as real arithmetic. For example, the division of one integer by another produces a quotient
and a remainder. Using ÷ to designate this operation, we see that 23 ÷ 8 = 2 with remainder
5. Recall that Matlab always performs arithmetic calculations using the real (and complex)
number system, so we have to do extra work to get the integer quotient and remainder. We will
use the Matlab built-in functions mod and floor to get integer values in the following “calendar
problems.”

The program Example1 5 indicates whether a given year is an ordinary year or a leap year.
After a value is read into variable year, a question is posed about its divisibility by 4. If the
value in year is a multiple of 4, then the remainder of year÷4 is zero, or we say that “year mod
4” is zero. The expression in the outer if statement

mod(year,4)

uses the built-in function mod to calculate the remainder of the integer division year÷4.

The output of Example1 5 prints within a message an integer value that has no fraction part.
We use the substitution sequence “%d” to substitute in a variable value as an integer, without a
decimal point.

It is instructive to “derive” Example1 5 taking the “top-down” approach. Assume that year
houses the value in question. We first examine year to see if it is divisible by 4:

if mod(year,4) ∼= 0

fprintf(’%d is an ordinary year\n’, year);

else

〈The case when year is divisible by 4.〉
end

1.4. Quotients and Remainders 23

If year is divisible by 4, then we must handle the century years and the solution fragment expands
to:

if mod(year,4) ∼= 0

fprintf(’%d is an ordinary year\n’, year);

else

if mod(year,100) == 0

〈The century year is divisible by 100.〉
else

fprintf(’%d is a leap year\n’, year);

end

end

This handling requires a check if the century year is divisible by 400:

if mod(year,4) ∼= 0

fprintf(’%d is an ordinary year\n’, year);

else

〈The case when year is divisible by 4.〉
end

If year is divisible by 4, then we must handle the century years and the solution fragment expands
to:

if mod(year,4) ∼= 0

fprintf(’%d is an ordinary year\n’, year);

else

if mod(year,100) == 0

if (year mod 400) <> 0

fprintf(’%d is an ordinary year\n’, year);

else

fprintf(’%d is a leap year\n’, year);

end

else

fprintf(’%d is a leap year\n’, year)

end

end

Often, after a top-down development like this it is possible to simplify the derived code using and
and or operations. With such a manipulation it is possible to remove the innermost if and that
produces Example1 5.

We now show yet another alternate solution to our question. Example1 6 uses a new “clause”
in our if-else construct: the elseif branch. Notice that elseif is one reserved word, distinct
from the previously introduced reserved words else and if. Recall that in the simple if-else
construct, we want to branch our program into two alternate paths:

if 〈Condition〉
〈Things to do if the condition is true.〉

24 Chapter 1. From Formula to Program

% Example 1 6: Leap year calculation

% Use ELSEIF branch

year= input(’Enter year: ’);

if (mod(year,4) ∼= 0)

fprintf(’%d is an ordinary year\n’, year);

elseif (mod(year,100)==0 && mod(year,400) ∼= 0)

fprintf(’%d is an ordinary year\n’, year);

else

fprintf(’%d is a leap year\n’, year);

end

Sample output:

Enter year: 1900

1900 is an ordinary year

else

〈Things to do if the condition is false.〉
end

If there are other “conditions” that we need to consider, we can nest if statements as shown
in Examples 1 4 and 1 5 where each individual if statement again deals with two alternatives.
Think of the elseif branch as a quick way to deal with a third alternative without nesting:

if 〈Condition 1〉
〈Things to do if the condition 1 is true.〉

elseif 〈Condition 2〉
〈Things to do if the condition 2 is true.〉

else

〈Things to do if all previous conditions are false.〉
end

Only one of the three branches above will be executed.

How do you decide between using a nested if-else construct and an if-elseif-else con-
struct? The if-else construct (with nesting) is more general and is available in almost all
programming languages. Furthermore, the if-else construct is simple, dealing with just two
options at a time, fitting in with the top-down development strategy. However, when a problem
at hand requires the selection of one action among three (or more) easily separated alternatives,
then the if-elseif-else construct is a winner! For now, focus on using top-down development to
create your programs instead of worrying about nested if-else versus if-elseif-else. In fact,
these options are not mutually exclusive—you can nest an if-else inside an if-elseif-else or
vice versa!

Let us review the general if statement:

if 〈Condition 1〉

1.4. Quotients and Remainders 25

% Example 1 7: Compute the number of leap year days between Jan 1, 1900,

% and December 31 of a prescribed year up to the 22nd century.

year= input(’Enter a year (1900-2199): ’);

if (year<2100)

leapdays= fix((year-1900)/4);

else

leapdays= fix((year-1900)/4)-1;

end

fprintf(’There are %d leap year days from Jan 1, 1900, to ’, leapdays);

fprintf(’Dec 31, %d.\n’, year);

Sample output:

Enter a year (1900-2199): 2005

There are 26 leap year days from Jan 1, 1900, to Dec 31, 2005.

〈Things to do if the condition 1 is true.〉
elseif 〈Condition 2〉

〈Things to do if the condition 2 is true.〉
elseif 〈Condition 3〉

〈Things to do if the condition 3 is true.〉
...

else

〈Things to do if all previous conditions are false.〉
end

One if statement ends with one reserved word end. There can be any number of elseif branches
but at most one else branch in an if statement. At most one branch of the if statement will
execute.

The program Example1 7 is concerned with the number of leap years that have occurred from
1900 to a specified year and introduces the fix function for rounding a real value towards zero.
Let x be a real value. The value of fix(x) is the integer obtained by throwing away the fraction
part. Thus, fix(-4.7) is the integer -4 while fix(2.1) is the integer 2.

Problem 1.6. Modify Example1 7 so that it changes the “base date” from January 1, 1900 to January 1, 1600.

Problem 1.7. Write a program that solicits a time period T in seconds and then prints its equivalent in units of
hours, minutes, and seconds. Thus, if T = 10000, then

T = 2 · 3600 + 46 · 60 + 40

implying that 10000 seconds equals 2 hours, 46 minutes, and 40 seconds.

26 Chapter 1. From Formula to Program

Problem 1.8. Assume that L and R are integers whose values satisfy 0 ≤ L ≤ R. Define m to be the largest

value that the cosine function attains on the set {Lo, . . . , Ro}. Thus, if L = 34 and R = 38, m is the largest of

the numbers cos(34o), cos(35o), cos(36o), cos(37o), and cos(38o). Write a program that solicits L and R from the

user and then determines and prints m.

Many applications require computations that produce integers from reals and vice versa. A
nice setting to practice these transitions deals with angles. We need a definition to get started.
We say that an angle θ measured in degrees is normalized if 0 ≤ θ < 360. Any angle d can be
written in the form

d = 360w + θ

where w is an integer called the winding number and θ is the normalized angle. Let’s consider
the problem of computing the winding number and normalization of an angle that is specified
in degrees. Assume that d is a real variable whose value is non-negative. We need to determine
how many integral multiples of 360 are contained in d. Again, we will use the fix function. The
fragment

w= fix(d/360);

theta= d - 360*w;

assigns the winding number to w and the normalization to theta. Why don’t we use the mod

function to calculate theta? The mod function usually is associated with integer values in most
programming languages, therefore we show the calculation above without using mod. However,
function mod in Matlab works for real values as well, so we could have used the assignment
statement theta= mod(d,360).

While fix takes a real value and obtains an integer by “removing” the fraction part, round
takes a real value and returns the value of the nearest integer. Thus, round(-4.7) is -5 while
round(2.8) is 3. In case there are two equally distant nearest integers, then the one further away
from 0 is selected. Thus, round(2.5) is 3. As an application, here is a statement that converts
an angular measure in radians stored in angle to the nearest integral degree:

degree= round((angle/pi)*180);

Problem 1.9. A sign on a taxi reads “5 dollars for the first eighth mile or fraction thereof and 2 dollars for each
successive eighth mile or fraction thereof.” Here is a small table that clarifies the method of charging:

Distance Charge
0.10 5
0.20 7
0.99 19
1.0 19

Write a program that solicits the distance traveled and prints the charge for the trip.

Problem 1.10. (a) Give a boolean expression that is true if the value in a real variable x is closer closer to an
integer than to a real number whose fractional part equals one-half. (b) Assume that a and b are real with a < b.
Write a fragment that prints the number of integers in the interval [a, b]. (c) Assume that a, b, and c are real

1.4. Quotients and Remainders 27

variables with positive values and that a and b are not integral multiples of c. Write a fragment that prints the
message “ok” if there is a real number strictly in between a and b that is an integral multiple of c. Indicate the
type of any additional variables required by your solution. Assume that a < b.

Problem 1.11. Assume that L and R are real with L < R. Write a program that reads L and R and prints the
maximum value of cos(x) on [L,R].

Problem 1.12. Suppose we have two rays which make make positive angles a and b with the positive x-axis.
Write a program that reads the two angles (in radians), and determines whether or not the two rays make an
acute angle. Examples: a = π/6 and b = 23π/6 do make an acute angle, while a = π/6 and b = 3π do not.

Problem 1.13. Write a program that reads in two nonnegative real numbers a and b and indicates whether or
not the two rays that make positive angles ao and bo with the positive x-axis are in the same quadrant. For clarity
we assume that if 0o <= x < 360o then

x is in the

First
Second
Third
Fourth

quadrant if

0 ≤ x < 90
90 ≤ x < 180
180 ≤ x < 270
270 ≤ x < 360

.

