1. Complete the following code in a script so that all the numbers between F_n and F_{n+1} are printed. As a reminder, $F_1 = 1$, $F_2 = 1$, and $F_k = F_{k-1} + F_{k-2}$ for $k > 2$. For example, if $n = 6$, then the numbers between $F_6 (= 8)$ and $F_7 (= 13)$ are 9, 10, 11 and 12. Do not use the for loop, use the while loop instead.

```matlab
N = input('Input N: ');
tempValue1 = 1;
tempValue2 = 1;
% Add the necessary code here
```

2. Write a Matlab function `aprime(m)` that has an input parameter `m`. Function `aprime(m)` returns 1 if `m` is prime, and 0 otherwise. Remember to write a concise comment to describe the function, including its parameters under the function header.

3. A twin prime is a pair of primes such that if p is a prime, $p + 2$ is also a prime. The larger prime in the pair is called the big prime, while the smaller prime is called the little prime. For example, in the twin prime pair (3,5), 5 is the big prime while 3 is the little prime. Write a function `lastTwinPair(n)` that will, given a number `n` greater than or equal to 3, return the last (largest) twin prime pair smaller than or equal to `n`. Use function `aprime` from the previous question! This function has two output arguments: `littlep` and `bigp`.

4. Write a function `twinPairSum` to return the arithmetic sum (big prime plus little prime) of the last twin prime pair smaller than or equal to `n`. Use the previous two functions.

Please delete your files from the computer before you leave!