Announcements:
- Project 3 will be posted this weekend, due Thurs after break
- Prelim 1 solutions:
 - Check it out if you made minor mistakes
 - Don't read the solution to a particular question if you had significant errors! Instead, try to re-do it and/or come to office hr to work with a staff member to really learn the material.

Previous Lecture:
- Easy plots in MATLAB
- 1-d array of characters—string

Today's Lecture:
- 2-d array—matrix

Reading:
- CFile: Chapter 9 Sec 9.1, 9.2

2-d array: matrix
- An array is a named collection of like data organized into rows and columns
- A 2-d array is a table, called a matrix
- Two indices identify the position of a value in a matrix, e.g., \(\text{mat}(r,c) \) refers to the cell in row \(r \), column \(c \) of matrix \(\text{mat} \)
- Array index starts at 1

Creating a matrix
- Built-in functions: ones, zeros, rand
 - E.g., \(\text{ones}(2,3) \) gives a 2-by-3 matrix of 1s
 - "Build" a matrix using square brackets, \([\]\):
 - \([x \ y]\) puts \(y \) to the right of \(x \)
 - \([x; y]\) puts \(y \) below \(x \)
 - What are the dimensions of a matrix \(M \)?
 - \([nr, nc] = \text{size}(M)\) % \(nr \) is # of rows, \(nc \) is # of columns
 - \(nr=\text{size}(M, 1) \) % # of rows
 - \(nc=\text{size}(M, 2) \) % # of columns

Example:
```matlab
A = [1 1]
A = [A' ones(2,1)]
A = [1 1 1 1; A A A]
```
- Error in 2nd statement
- Error in 3rd statement
- A is 3-by-4 matrix
- A is 4-by-3 matrix
- A is vector of length 12

Example: min value in a matrix
```matlab
function val = minInMatrix(M)
% val is the lowest value in matrix M
```

% val is the lowest value in matrix M
Pattern for traversing a matrix \(M \)

\[
\begin{align*}
[nr, nc] &= \text{size}(M) \\
&\text{for } r = 1: nr \\
&\quad \text{for } c = 1: nc \\
&\quad \quad \text{do something with } M(r,c) \ldots \\
&\quad \text{end}
&\text{end}
\end{align*}
\]

% Given an \(nr \)-by-\(nc \) matrix \(M \)
\[
\begin{align*}
&\text{for } r = 1: nr \\
&\quad \text{for } c = 1: nc \\
&\quad \quad A(c,r) = M(r,c); \\
&\quad \text{end}
&\text{end}
\end{align*}
\]

a. \(A \) is \(M \) with the columns in reverse order
b. \(A \) is \(M \) with the rows in reverse order
c. \(A \) is the transpose of \(M \)
d. \(A \) and \(M \) are the same

% Given an \(n \)-by-\(m \) matrix \(A \)
\[
\begin{align*}
&\text{for } g = 1: n \\
&\quad \text{for } h = 1: \text{floor}(m/2) \\
&\quad \quad A(g,h) = A(g, m-h+1); \\
&\quad \text{end}
&\text{end}
\end{align*}
\]

a. Reflect the right half of \(A \) onto the left half
b. Reflect the bottom half of \(A \) onto the top half

Local minimum in a neighborhood

\[
\begin{array}{ccc}
2 & -1 & 5 \\
3 & 8 & 6 \\
5 & -3 & 9 \\
52 & 81 & 5 \\
\end{array}
\]

Cell (2,3)

Neighborhood of cell (2,3)

Local minimum in a neighborhood

Write a function \texttt{minInNeighborhood}

Input parameters:
- \(M \): matrix of numeric values
- \texttt{loc}: location of the middle of the neighborhood
 \(\text{loc}(1), \text{loc}(2) \) are the row, column numbers

Output parameter: \texttt{minVal}
 The minimum value of the neighborhood
Ask yourself leading questions!
- Can you find the min of a (sub)matrix?
 - Yes! Our function \(\text{minInMatrix}(A) \)
- Given the indices \(r, c \) (representing cell \(M(r,c) \)), is it easy to define the neighborhood?
 - Yes, for the general case the neighborhood is \(M(r-1:r+1, c-1:c+1) \)
 - But the “border cases” add complexity
- Can we get rid of the border cases?

Local minimum in a neighborhood

\[
\begin{array}{cccc}
2 & 1 & 5 & 0 \\
3 & 8 & 6 & \text{?} \\
5 & \text{?} & 8 & 5 \\
52 & 81 & 5 & 7 \\
\end{array}
\]

Want to be able to use the general case, \(M(r-1:r+1, c-1:c+1) \)