Topics: One-dimensional array—vector, easy plots in MATLAB
Reading: CFile Chapter 5 Sec 5.1

1-Dimensional Array: Vector

An array is a named collection of data values organized into rows and/or columns. A 1-d array is a row or a column, also known as a vector. An index is a positive integer that identifies the position of a value in the vector. MATLAB array index starts at 1, not zero. To access a value in an array, use parentheses to enclose the index value. For example, \(x(2) \) is the value in the 2nd cell of vector \(x \). MATLAB distinguishes between row and column vectors. Use square brackets to delimit arrays.

Creating a vector

MATLAB function zeros: \(\text{vecA} = \text{zeros}(1,5) \)
MATLAB function ones: \(\text{vecB} = \text{ones}(5,1) \)
MATLAB short-cut expression for consecutive numbers: \(1:6 \) or \(1:1:6 \)
Note that the syntax is \(\langle \text{left bound} \rangle: \langle \text{increment} \rangle: \langle \text{right bound} \rangle \), so the expression \(7:-2:0 \) gives \([7 \ 5 \ 3 \ 1] \).
Assignment: \(\text{vecC}(5) = 9 \) gives \([0 \ 0 \ 0 \ 0 \ 9] \)
Build using square brackets: \(\text{vecD} = [2 \ 3.5 \ 6] \)

Example 1

Write a program fragment that calculates the cumulative sums of a given vector \(v \). The cumulative sums should be stored in a vector of the same length as \(v \). E.g., the cumulative sums for the sequence 1,3,5,0 is 1,4,9,9. Do not use MATLAB predefined functions other than length.

Example 2

Write a function evalPoly to evaluate an \(n \)th order polynomial of \(x \):

\[
a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n
\]

The input parameters are \(\text{coef} \) and \(x \) where \(\text{coef} \) has length \(n + 1 \) and contains the coefficients of the polynomial and \(x \) is the value at which to evaluate the polynomial. Return the evaluated value. Note that \(\text{coef}(1) \) is the coefficient for the term \(x^0 \). Do not use MATLAB predefined functions other than length.
function val= evalPoly(coef,x)
% val is the value of a polynomial with coefficients coef evaluated at x.
% coef is a vector and coef(1) is the coefficient for the term x^0.

Example 3: A random walk with graphics

Write a function randomWalk that performs n steps of a “random walk” starting from position \((x_0, y_0)\) and draws the path. In a random walk, possible moves are left, right, up, or down (in a Cartesian plane).

function randomWalk(n,x0,y0)
% Perform n steps of random walk starting from position (x0,y0). Display the path.
%
% possible movements: \((\text{deltaX}(i), \text{deltaY}(i))\)

deltaX=

deltaY=

x= [x0 zeros(1,n)]; % trajectory in x direction
y= [y0 zeros(1,n)]; % trajectory in y direction

% Perform walk, each step is based on a random integer
for k = 2:n+1
 % get a random integer in \((1..4)\)
 r=

 % take the step
 x(k)=

 y(k)=
end

% Show the walk
plot(x,y,x(1),y(1),'r*',x(end),y(end),'ro')
axis('equal')
title(['num2str(n) ' steps of random walk from * to o'])

Plotting

It is very easy to make plots using MATLAB. An x-y plot can be generated using the built-in function plot. The command

```
plot(a,b,'-', c,d,'*')
```

will generate a plot with two graphs, one showing the data contained in vectors \(a\) (in x-direction) and \(b\) (in y-direction) as a line and the other showing the data in vectors \(c\) and \(d\) as asterisks. Use the \texttt{help} facility in MATLAB to learn more about \texttt{plot} and the many formatting options. If you omit the formatting option (’-‘ and ’*’ above), the default on most system is to show the data as a line.