Problem 1 of Review Questions

```matlab
amt = input('Enter the Income: ');  
if (amt > 60000)  
tax = (25/100)*30000+(30/100)*30000+(40/100)*(amt-60000);  
elseif (amt > 30000)  
tax = (25/100)*30000+(30/100)*(amt-30000);  
else  
tax = (25/100)*(amt);  
end  
fprintf('The tax to be paid for an income of %d is %d',amt,tax);
```

Problem 2 of Review Questions

```matlab
x = input('Enter the first number: ');  
y = input('Enter the second number: ');  
z = input('Enter the third number: ');  
if (x > y)  
    if (x > z)  
        fprintf('The maximum of numbers %d, %d, %d is %d',x,y,z,x);  
    else  
        fprintf('The maximum of numbers %d, %d, %d is %d',x,y,z,z);  
    end  
else  
    if (y > z)  
        fprintf('The maximum of numbers %d, %d, %d is %d',x,y,z,y);  
    else  
        fprintf('The maximum of numbers %d, %d, %d is %d',x,y,z,z);  
    end  
end
```
Problem 3 of Review Questions

% Declare sum,count and set max, min to the first value entered.
sum = 0.0;
count = 0;
um = input('Enter a number(-ve value to terminate): ');
max = num;
min = num;

while(num >= 0)
 if (num > max)
 max = num;
 end
 if (num < min)
 min = num;
 end
 count = count+1;
 sum = sum+num;
 num = input('Enter another: ');
end

if (count == 0)
 fprintf('The sequence cannot start with a negative value');
else
 mean = sum/(count);
 fprintf('statistics of the %d numbers are
',count);
 fprintf('sum = %f
mean = %f
maximum = %f
minimum = %f', ...
 sum,mean,max,min);
end

Problem 4 of Review Questions

% Assume variables nBig and nSm are given

% Outer loop to iterate from nBig to nSm
while (nBig >= nSm)

 % Check nBig to see if it is prime
 d=2; % divisor
 % Iterate until first proper divisor is found
 while (mod(nBig,d) ~= 0);
 d = d + 1;
 end
 if (d == nBig)
 fprintf('%d is a prime
',nBig);
 else
 fprintf('%d
',nBig);
 end
 nBig = nBig – 1;
end
Problem 5 of Review Questions

% Vector dep and scalar bal are assumed to be given!

len = length(dep);
count = 1;
Max_Amt = 1000;
daily_bal(1) = bal + dep(1);

fprintf('Day %d balance %f
', count, daily_bal(count));
% Update daily_bal until either all the deposits are added
% or the max_amt reaches a set value.
while((count < len) & (daily_bal(count) < Max_Amt))
 count = count+1;
 daily_bal(count) = daily_bal(count-1) + dep(count);
 fprintf('Day %d balance %f
', count, daily_bal(count));
end

Problem 6 of Review Questions

% v assumed to be given

cumulative_prod(1) = v(1);
i = 2;
while (i <= length(v))
 cumulative_prod(i)=cumulative_prod(i-1)*v(i);
 i = i + 1;
end

Problem 7 of Review Questions

% ptA, ptB,ptC are assumed to be given

+ sqrt(sum((ptC-ptA).^2));
fprintf('The perimeter of the triangle is %f',perimeter);

% Below is an alternate solution:
% \%perimeter = sqrt((ptA(1)-ptB(1))^2 + (ptA(2)-ptB(2))^2);
%perimeter = perimeter + sqrt((ptB(1)-ptC(1))^2 + (ptB(2)-ptC(2))^2);
%perimeter = perimeter + sqrt((ptC(1)-ptA(1))^2 + (ptC(2)-ptA(2))^2);
%fprintf('The perimeter of the triangle is %f',perimeter);