
Discussion
6.4 Tell how you would compute the optimal alignment from the score matrix.

The simplest way is to keep a matrix of alignments which keeps the optimal alignment for each pair of
prefixes.  This matrix would have the same dimensions as the opt_score matrix.  Each cell would contain
a pair of strings representing an alignment.  Each string would consist of the characters A, C, G, T, or -.
The character “-” indicates a gap.  The optimal alignment for each entry in this matrix (corresponding to
each pair of prefixes) can be computed by seeing which of the 3 possible choices in the corresponding
cell of opt_score was the minimum.  Say we’re computing the optimal alignment in row i, column j (so
for the prefix of length i of one string with the prefix of length j of the other string).

If align_i_with_j was minimum, then we start with the optimal alignment stored in row i-1 and
columnj-1, add the characterDseq1[i] to the first alignment string, and add the characterDseq2[j]
to the second alignment string.

If align_seq1_i_with_gap was minimum, then we start with the optimal alignment stored in row
i-1 and columnj, add the characterDseq1[i] to the first alignment string, and add the gap character
“-” to the second alignment string.

If align_seq2_j_with_gap was minimum, then we start with the optimal alignment stored in row i
and columnj-1, add the character “-” to the first alignment string, and add the characterDseq2[j] to
the second alignment string.

The last entry in this matrix will then have the optimal alignment.

Unfortunately, this matrix contains a great many characters.  So many, in fact, that it is usually considered
too many to keep, as it would use up too much of the computer’s memory.  So instead of the algorithm
described above, all that is usually stored in addition to theopt_score matrix is which of the possible
3 choices for opt_score was minimum for each cell/entry of opt_score.  We need to record one of these
three “choices” even for the cells filled during initialization where there were no choices, i.e. row 0 and
column 0.  Every entry in row 0 should indicate thatalign_seq2_j_with_gap was minimum.  This
is because the prefixes corresponding to the entries in row 0 contain no characters of DNA sequence 1, so
all DNA sequence 2 characters are aligned with a gap.  Similarly, every entry in column 0 should indicate
thatalign_seq1_i_with_gap was minimum.  The first entry (row 0, column 0) will not be used, so
it doesn’t matter what is stored here.

Then we build the alignment backwards from the end.  Knowing which choice was selected here tells us
what the end of the alignment looks like.  Recall that the three choices for the end of the alignment are
that the final character of each DNA sequence may be aligned with each other, or that the final character
of the first DNA sequence may be aligned with a final gap, or the final character of the second DNA
sequence may be aligned with a final gap.  So we can write down the end of the alignment.  Then we can
look at the remaining problem, working our way through this matrix until we get to the beginning.

Specifically, we begin in the last cell, so we seti = m andj = n, and we begin with two empty strings
representing the optimal alignment.

If align_i_with_j was minimum, then we insert the characterDseq1[i] in the front of the first
alignment string, and insert the characterDseq2[j] in the front of the second alignment string.  Then
we reduce bothi andj by 1 (i = i-1 and j = j-1).



If align_seq1_i_with_gap was minimum, then we insert the characterDseq1[i] in the front of
the first alignment string, and insert the character “-” in the front of the second alignment string.  Then
we reducei by 1 and leave j unchanged (i = i-1).

If align_seq2_j_with_gap was minimum, then we insert the character “-” in the front of the first
alignment string, and insert the character Dseq2[j] in the front of the second alignment string.  Then
we leavei unchanged and reducej by 1 (j = j-1).

When we get toi=0 andj=0 we are done.



6.6 Describe your testing strategy for code from Sections 6.1, 6.2, and 6.3.  You should describe the
types of inputs you used.

To test the code appropriately, you should try all the types of valid and invalid inputs which a user might
enter.  Note that we are talking about testing various types of inputs which a user enters into the running
code, not what the code should do (which was called error checking).

For all sections, you should test the following types of invalid input to ensure the program handles them
appropriately:
• A DNA sequence with characters other than A, C, G, T.
• A DNA sequence with numeric “characters”.
• A DNA sequence with more than 20 bases (if this is invalid for your program).

In addition, test sequences of differing lengths for Hamming distance and weighted distance.

For all sections, test the following types of valid input to ensure the program handles them appropriately:
• 20-character long sequences
• 1 character sequences
• identical sequences
• sequences which differ at every position
• sequences which differ only in the first position
• sequences which differ only in the last position

In addition, for the weighted distance you should check:
• sequences which have a different Hamming distance than weighted distance
• using a matrix with 1’s for all non-diagonal entries to test that the weighted distance then returns the

same answer as Hamming distance.

 In addition, for the minimum distance you should check:
• sequences of equal length for which the minimum distance is the weighted distance (i.e., no gaps are

required).
• sequences of equal length which require a gap for the minimum distance (i.e., sequences with different

minimum distance than weighted distance)
• sequences where the first sequence is shorter than the second.
• sequences where the first sequence is longer than the second.
• sequences of unequal length where the only gaps required for the minimum distance are at the end of the

shorter sequence.
•  sequences of unequal length where the only gaps required for the minimum distance are at the

beginning of the shorter sequence.
•  sequences of unequal length where the only gaps required for the minimum distance are in the middle

of the shorter sequence.
• sequences of unequal length where gaps are required at the beginning of the longer sequence for the

minimum distance.
• sequences of unequal length where gaps are required at the end of the longer sequence for the minimum

distance.
• sequences of unequal length where gaps are required in the middle of the longer sequence for the

minimum distance.
• sequences of unequal length where gaps are required in both sequences for the minimum distance.

Any of these tests could uncover a problem in the code which might go undetected by the other tests.



In what ways did your testing strategy differ for the different distance methods?  Why?

In the Hamming distance method, all pairs of characters which are not the same contribute equally to the
total distance, but this is not true of the weighted distance.  For this reason, we needed to test more cases
for the weighted distance method than for the Hamming distance method.  In particular, we could test a
pair of DNA sequences which have the same non-zero weighted distance as Hamming distance, and
another pair of DNA sequences where the weighted distance and Hamming distance differ.  For truly
robust testing, we could use pairs of DNA sequences which use each of the 16 entries in the substitution
matrix.

Many more types of input need to be tested for the minimum distance method than for the other distance
methods.  This is because the minimum distance method is more flexible and much more complex.

How did the results of the different methods vary?  Why?

The Hamming distance will never be greater than the weighted distance.  This is because they both
consider pairs of characters between 2 sequences in their “natural” alignment (i.e., the first character of
each sequence are “paired”, the second characters are “paired”, etc.).  In this pairing, differing characters
have a difference of 1 in the Hamming distance, and a difference of at least 1 in the weighted distance.

If two DNA sequences can be compared with the weighted distance (that is, if the two DNA sequences
have the same length), then the minimum distance will never be greater than the weighted distance.  This
is because they both use the same substitution matrix, but the minimum distance has the flexibility to add
gaps to get a smaller distance.  The minimum distance will never be greater than the weighted distance,
because the weighted distance is one of the valid alignments considered by the minimum distance
method.

It should be noted that the Hamming distance need not be less than the minimum distance.  For example,
take the DNA sequence “TATATATATA” (“T A” repeated 5 times) and for our first string insert a “C” in
the beginning, and for our second string instead add a “C” at the end, so our two DNA sequences are:
CTATATATATA TATATATATAC The Hamming distance between these two DNA sequences is 11 (all
pairs differ), the weighted distance is 31 (the distance between the initial bases “C” and “T” is 1, the other
10 distances are 3), and the minimum distance is 10 (achieved by adding a gap to the end of the first
sequence and a gap at the beginning of the second sequence), so in this case the minimum distance is
smaller than the Hamming distance.

The minimum distance is more flexible than the other two methods since the two DNA sequences it
considers do not need to be the same length.


