
1

CS100B Fall 1999

Mathematical Exposé on Newton’s Method

David I. Schwartz

1. Goals

This report explains Newton’s Method for root solving. A majority of this report reviews
background concepts/formula/theory that all help explain the “gist” of Newton’s Method.
Students who need to refresh their memory of some underlying mathematics should thoroughly
review this report. Also, anyone interested in discovering how to apply Java, Maple, andMATLAB

to these concepts should check each section for scattered bits of code.

2. Functions

Recall some basic concepts about functions. Although many notions appear obvious,
understanding Newton’s Method requires a solid foundation of basic algebra.

2.1 The Basics

Let , where

• is thedependent variable, plotted on the vertical axis

• is theindependent variable, plotted on the horizontal axis.

2.2 Plotting

For example, consider the plot of in Figure 1.

Figure 1: Plot of Function

y f x()=

y

x

f x() x
2

1–=

x

y f x()=

root
root

y

-1

1-1

2

How can you create this graph? Because the variable is independent, you can pick arbitrary

values of . Given an arbitrary value of , you would then calculate from the polynomial

. For example, at , . Thus, for , . So, you

plot the point and, then, try other values of .

2.3 Algorithm

Remember that depends on . So, when converting a function into computer code, you need to
let the computer vary the independent variable. Each time the independent variable changes, you
can let the computer calculate a new value for the dependent variable. For instance, to implement
the example presented above in Section 2.2, follow these steps:

1. Declare your variables:

• Let y be dependent.

• Let x be independent.

2. Choose starting and stopping values for the dependent variable:

• Choosestart = -2 .

• Choosestop = 2 .

3. Incrementx and iterate for values ofy :

• Let delta_x = 0.1 .

• Computey = Math.pow(x,2) - 1 .

2.4 Computer Code

The following code implements the algorithm in Section 2.3. Note thatFormat.java ,
borrowed from CUCS Stationery, provides methods for printing formatted output:
public class plotting_function

{
public static void main(String args[])

{

double x; // independent variable
double y; // dependent variable

double start = -2; // starting value of x
double stop = 2; // stopping value of x
double inc = 0.1; // increment of x

// iterate for different values of y given increments of x
for (x = start; x <= stop; x=x+inc) {

y = Math.pow(x,2) - 1;
Format.print(System.out,”%4.2f “,x); //See Format.java
Format.print(System.out,”%4.2f\n”,y); //See Format.java

}
}

}

x

x x f x()

x
2

1– x 2= f x() 2
2

1– 3= = x 2= y f 2() 3= =

x y,() 2 3,()= x

y x

3

NOTE: Format.java stationery will be explained in an upcoming handout. For now, please
accept on faith!

3. Slope

Newton’s Method relies on a thorough understanding ofslope, a measure of how a function
changes.

3.1 Appr oximate

Assume a function is continuous and smooth for any value of . Pick two values of ,

called and , that have respective values and , as shown in Figure 2.

The following equation represents the approximate slope between Points 1 and 2:

. (1)

In general, denote slope with the letter.

3.2 Lines

If is linear, then Equation 1 is exact. For example, the line is linear. Two
formulas for the equation of a line use Equation 1 and should look familiar:

, (2)

giveny-intercept , and

. (3)

Equation 3 is also called thepoint-slope formula of a line.

3.3 Exact

Calculus provides an analytical method for finding slope. Consider the curve , shown in

Figure 2. Find the slope, , of Line using Equation 1:

. (4)

Apply mathematical limits such that “shrinks” as . Then, the Line approaches the

tangent to Point :

(5)

Equation 5 represents the formula forderivatives. A derivative measures slope, the instantaneous
rate of change of a function at a point. Note that derivatives exist only where a function is smooth
and continuous.

y f x()= x x

x1 x2 y1 f x1()= y2 f x2()=

Slope
∆y
∆x
------≈

y2 y1–

x2 x1–
----------------=

m

f x() y f x() x 1+= =

y mx b+=

b

y y1– m x x1–()=

y f x()=

m 12

m12

f x2() f x1()–

x2 x1–

f x1 ∆x+() f x1()–

x1 ∆x+() x1()–
--

f x1 ∆x+() f x1()–

∆x
--= = =

∆x ∆x 0→ 12

1

mTangent

f x1 ∆x+() f x1()–

∆x
--

∆x 0→
lim=

4

3.4 Notation

Using only approximates slope, but you can improve your accuracy. Thefirst derivative of

with respect to finds the exact, “instantaneous” slope anywhere on :

First Derivative: . (6)

Whereas indicates a “large” change, indicates an infinitesimal change in a variable. Thus, a
derivative provides an exact slope at a point.

3.5 Implementation

Except when using a numerical method for computing derivatives, like finite differences, you
should just work out the derivative by hand. You can then express the formula you derived using
mathematical expressions.

For example, consider the polynomial function . The first

derivative is using rules of differentiation. Using Java, you could enter the

following code to compute the values of and at :
double x = 2; // assign 2 to x

double y = Math.pow(x,3) + 2*x + 1; // assign f(2) to y

double y_prime = 3*Math.pow(x,2) + 2; // assign f’(2) to y_prime

3.6 Mathematical Software

Would you prefer that computer do the derivative as well? Consult programs called Computer
Algebra Systems (CAS), like Maple. For instance, the following Maple code will compute the
derivative for you:

• Maple

Figure 2: Finding Slopes

x1 x2

y1

y2

Tangent
1

2

x

y f x()=

∆x

y

∆y
∆x
------ y

x f x()

y′ f′ x() yd
xd

xd

d
f x()= = =

∆ d

y f x() x
3

2x 1+ += =

f′ x() 3x
2

2+=

f x() f′ x() x 2=

5

> diff(x^3+2*x+1,x);
���������
	����������������������������� �����������
� �"!�#

If you preferMATLAB , the following code instructsMATLAB to activate its CAS, which happens to
be Maple!

• MATLAB :
>> f = sym(’x^3+2*x+1’);

�%$�& '($*)+	�������,�����-��������������� �������(�,�
�.�/!�!�#

>> diff(f)

Both approaches produce the identical result of .

4. Roots

4.1 Equation

Sometimes functions are expressed in terms of anequation, where . When , you

can say . If has a constant value, you can still rearrange the equation to get a zero on

one side. For example, is equivalent to .

4.2 Assumptions

Let , where a function of . Assume that is smooth and continuous, so you can

rest assured is differentiable “anywhere” you like. So, you can calculate at any value

of . Solving for a derivative, the slope at a point, will help find a root of . So, what’s aroot?

4.3 Real Roots

A particular value of that will produce is called aroot. For instance, given

, the values and produce 0, as shown in Figure 1. When roots have

real values, sometimes the roots are calledreal roots. Since when is root, the
plot crosses they-axis. This notion, though a bit obvious, does explain why plotting a graph helps
understand an equation’s behavior.

4.4 Appr oximate Solution

Think about this simple statement: When is a root, . Without doing much math,
you can try plotting a function to see where the function crosses the vertical axis. Refer to the
code in Section 2.4. Try different starting and stopping values, and inspect the output for a change
in signs.

NOTES: A better approach would involve either storing the two values ofx just “before”
and just “after” the sign ofy changes. You could also send thex andy data to a file and read in
the values intoMATLAB to produce a plot. (A reminder: something we should enhance here.)

4.5 Imaginar y Roots

Although not mandatory, sometimes imaginary roots will also produce 0 in a function. Recall that
an imaginary number is defined as follows:

3x
2

2+

y f x()= y 0=

f x() 0= y

x
2

1= x
2

1– 0=

y f x()= f x f x()

f x() f′ x()

x f x()

x f x() 0=

f x() x
2

1–= x 1= x 1–=

y f x() 0= = x

x y f x() 0= =

i

6

. (7)

Consider the forth-order polynomial . The values are all roots. You can use
both Maple andMATLAB to test these results:

• Maple:
> solve(x^4-1=0,x);

• MATLAB :
>> sym(’x^4-1=0’);

>> solve(f,’x’)
ans =
[1]
[-1]
[i]
[-i]

In general, ignore potential imaginary roots and concentrate on finding real roots.

5. Newton’ s Method

Newton’s Method is a quick, efficient approach that finds a root of a function. This section
assumes that you understand concepts of functions, equations, plotting, slopes, and derivatives. If
not, please review earlier sections in this report.

5.1 Using T angents

Most numerical approaches involve some guessing. You might even get lucky! Assume that you
need to find the root of a function. Try the following steps assuming you have a differentiable

function with slope :

1. Guess a value of .

• Call this value , your first “guess” of .

• Use the code in Section 2.4 to provide a “close” answer.

• Check if you “got lucky.” If not, continue on….

2. Consider the tangent to the function at .

• Compute thex-intercept of the tangent, the position where the tangent crosses the
horizontal axis.

• You can use the point-slope formula for thetangent line given and :

(8)

• The tangent line crosses thex-axis at the point , as shown in Figure 3. Thus,

when . From the point-slope formula, you can then say

i 1–=

x
4

1– 1 1– i and i–, , , ,

1 1– I I–, , ,

xr

f x() f ′ x()

x

x1 x

f x1() x1

f x() f ′ x()

y f x1()– f′ x1() x x1–()=

x2 0,() y 0=

x x2=

7

(9)

for the tangent line. Remember: Equation 9 represents the tangent line drawn from your first
guess, , but not the function !

• Rearranging Equation 9 produces the following result that finds :

. (10)

3. Repeat Step 2, as shown in Figure 3.

• becomes the new “guess,” resembling .

• Solve for by Equation 10, using a new tangent line drawn at :

. (11)

4. Stop iterating when your “result” is “close enough:”

• The previous and new value of differ less than a given tolerance .

• The value of is close to zero within a given tolerance .

Figure 3: Ne wton’ s Method

0 f x1()– f′ x1() x2 x1–()=

x1 f x()

x2

x2 x1

f x1()

f′ x1()
-------------–=

x2 x1

x3 x2

x3 x2

f x2()

f′ x2()
-------------–=

x ε

f x() ε

x

y f x()=

Root

y

xr

Tangent

x2 x1

f x1()

f x2()

1st Guess

x3

f x3()

8

5.2 Algorithm

The following algorithm is modified from Programming Assignment 2. This version enforces
tolerance in . Assume that the function is assigned to the variable f_of_x . Also,

assume that the derivative is assigned toderiv . Refer to Section 3.5 for more details on
coding these functions:

• Pick an initial valuex .
• Calculatef_of_x .

• While , iterate as follows:

• Compute the value of . Assign the result tof_of_x .

• Compute the value of . Assign the result toderiv .

• Compute the new value of usingx = x - f_of_x/deriv .

• Compute the new value of .

5.3 Notes

• Stopping condition: Checking either or will work, though checking might
provide a more accurate result. For instance, if a root is along a “steep” curve, small changes
in make “big” changes in .

• Convergence: Newton’s Method is not perfect! If the slope of the function is zero or if there
are multiple roots, Newton’s Method is insufficient. More advanced algorithms in numerical
analysis account for these facts and improve this basic algorithm.

f x() f x()

f′ x()

f x() 0– ε≤
f x()

f′ x()

x

f x()

x f x() f x()

x f x()

