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EXAMPLE PROBLEM

Figure 0- 1: Example De vice

A device composed of two elastic bars capped with rigid
plates is shown in Fig. 0-1. Loads are statically applied on
both plate① and plate②. For now, call the connections at①
and② asnodes.

Figure 0- 2: Model of De vice

You can model elastic bars as springs as shown in Fig. 0-2.
Assume that Hooke’s law  governs spring behavior
as discussed in Chapter 6.

Figure 0- 3: Free Bod y Diagrams

After slowly applying loads, the bars deform and reach a
new resting orequilibrium position. The applied loads and
internal bar forces must balance according to equilibrium.
Assume no twisting or rotation of the plates occur.

Figure 0- 4: Hooke’ s Law

From Hooke’s Law, relate each spring’s internal force with
to relative displacement, the measure of how much each
spring stretches. Bars and  have relative displacements

 and , respectively.

Figure 0- 5: Relative Displacements

Displacement at② stretches spring  and compresses spring

. Displacement at①  stretches spring . Therefore,

determine ’s “relative stretch” by subtracting node②’s

displacement  from that of node① as shown in Fig. 0-5.

Figure 0- 6: Combine Equations

Ease your computation by expressing the equations in terms
of nodal values as shown in Fig. 0-6. Combine equilibrium,
Hooke’s Law, and displacement relations into two equations
in terms of , , and .
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SYSTEMS OF EQUATIONS

Rearrange the equations of Fig. 0-6 into thesystem of equations,

(1)

(2)

A system of equations collects simultaneous equations with common unknown variables also
calledunknowns or indeterminates. The system in Eq. 1 and 2 has two unknowns,  and .

Assume all other variables have predetermined values.
Linear systems contain all first-order equations in the form . Both

Eq. 1 and 2 contain terms with powers no greater than one, and thus, constitute a linear system.
On the other hand,non-linear systems of equations contain terms with powers higher than one.

GAUSSIAN ELIMINATION

Solve for the unknowns  and  as shown in Fig. . First, assume values , ,

, and  in Step①. Apply gaussian elimination as demonstrated by Steps②, ③,

and④. By adjusting coefficients, you can eliminate common terms. After dividing out leading
coefficients, solve for unknowns by backsubstitution.

DEPENDENCY

The following conditions characterize alinearly independent system of equations:
• The number of equations match the number of unknowns.
• No equation is a multiple of another equation in the system.
A linearly independent system produces only one, or unique, solution for each unknown as
demonstrated in Figure 1. You might encounter systems with duplicates of equations, such as the
system  and . Such a system produces an infinite number of and
solutions and is calledlinearly dependent.

Denote the resulting “matrix form” of the equations as

(3)

where matrix multiplication and equality are implied. Each term is described below:

Substitute values
into Eqs. 1 and 2.

Reduce the
second equation by
adding the first.

Divide equations
by the first or
leading coefficient.

Backsubstitute
results into the first
equation.

FIGURE 1: GAUSSIAN ELIMINATION
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MANUAL SOLUTION

As demonstrated in this document, you can perform Gaussian elimination to solve the system of
equations that Eq. 3 represents. But, why should you use the matrix formulation? Vectors and
matrices store equation data in a compact form that computer programs can readily manipulate.
Though more complex techniques exist, you can solve the matrix formulation withrow reduction,
which is a method that mimics Gaussian elimination as demonstrated in Table 2.
The following steps illustrate row reduction:
• Step①: Cast the equations into a matrix formulation.
• Step②: Rewrite the system into a matrix that includes the source vector written to the right.

You may draw a vertical bar to serve as a reminder to separate the coefficient matrix.
• Step③: Row reduction dictates that you may add a row to any other row. So, add the top row

to the bottom row. This process is equivalent to adding an equation to another equation within
the given system.

• Step④: Row reduction also dictates you can multiply any row by any constant. So, divide the
top row by 2, and divide the bottom row by 3. Note that you can perform this action in
conjunction with adding rows to each other.

• Step⑤: You keep performing row reduction until the coefficient matrix becomes theidentity
matrix, a matrix with values of 1 on the diagonal and 0 elsewhere. The final values in the
right-hand column of the matrix represent the solution vector.

Note that a linearly dependent system of equations will yield at least one row that contains only
values of zero.

System
Thesystem of equations, , is a set of simultaneous linear equations.

Coefficient
Matrix

Thecoefficient matrix, , collects the constants in front of unknowns:

• Square matrices, , have same the number of unknowns and equations.
• Elements of these matrices typically reflect models’ physical parameters.

Source
Vector

Thesource vector, , applies modeled inputs or “sources” to the system:
• In the spring example, these source terms are loads.
• Source values are typically known or assumed.

Solution
Vector Thesolution vector, , collects the unknown variables you wish to find:

• The matrix formulation separates known and unknown variables.
• Manipulating the coefficient matrix and source vector with linear algebra

techniques like Gaussian elimination (Fig. ) finds the unknowns.
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TABLE 2: ROW REDUCTION

Step Matrix Formulation Operations Results
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