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EXAMPLE PROBLEM

Figure 0- 1: Example De vice

A device composed of tw elastic bars capped with rigid
plates is shon in Fig. 0-1. Loads are statically applied on
both platel] and platel. For now, call the connections at
and[] asnodes.

g

b a u
P, | You can model elastic bars as springs asveha Fig. 0-2.
D | p/u; | Assume that Hoaks lav p = ku governs spring belvéor
o u, ? as discussed in Chapter 6.
Figure 0- 2: Model of De vice
J O
p .
Pp * raef>r | After slowly applying loads, the bars deform and reach a
P2 new resting orequilibrium position. The applied loads and
Pp = P2+ Py Pa = Py internal bar forces must balance according to equilibrium.
= P+ D, Assume no twisting or rotation of the plates occur

Figure O- 3: Free Bod y Diagrams

pa = kaua
Py = Kyl

k
1
u

Figure O- 4: Hooke’ s Law

From Hoole’s Law, relate each spring/internal force with
to relative displacement, the measure of o much each

spring stretches. Bas andb have relatve displacements
u, anduy,, respectiely.
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Up = U,
Ou, =u;—u,

Figure 0- 5: Relative Displacements

Displacement ail stretches sprin and compresses spring
a. Displacement af]l (u,) stretches spring. Therefore,
determinea’s “relatve stretch” by subtracting node’s
displacementu,) from that of nodél as shwn in Fig. 0-5.

p]_ = pa
= kaua = ka(ul_ Uz)
Py = Pp—P1

KU, —Ka(Uuy —Uy)
= _kaul + (ka + kb) )

Figure 0- 6: Combine Equations

Ease your computation by@ressing the equations in terms
of nodal \alues as shvwn in Fig. 0-6. Combine equilibrium,
Hooke’s Law, and displacement relations intoowquations
in terms ofp, k, andu.
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SYSTEMS OF EQUATIONS

Rearrange the equations of Fig6 @ato thesystem of equations
K u; —Kau, = pg (1)
_kaul + (ka + kb)uz = P2 (2
A system of equations collects simultaneous equations with commonwmkmaoiables also

called unknowns or indeterminates. The system in Eq. 1 and 2 hastwnknavns, u; andu,.

Assume all otherariables hae predeterminedalues.
Linear systemsontain all first-order equations in the foeg = a;x; + ... +a,x,,. Both

Eq. 1 and 2 contain terms withyers no greater than one, and thus, constitute a linear system.
On the other hanahon-linear system®f equations contain terms withyers higher than one.

GAUSSIAN ELIMINATION

Solwe for the unknans u; andu, as shwn in Fig. . First, assumealuesk, = 2, k, = 3,

p, = 10, andp, = 20 in Step. Apply gaussian eliminationas demonstrated by Stelps (],

and 0. By adjusting codicients, you can eliminate common terms. Afteriding out leading
coeficients, sole for unknavns by backsubstitution.

Substitute values Reduce the _ Divide gquations Backsu_bstitute _
into Eqs. 1 and 2 second equation by by the first or results into the first
’ ’ adding the first. leading coefficient. equation.

FIGURE 1. GAUSSIAN ELIMINATION

DEPENDENCY

The following conditions characterizeliaearly independensystem of equations:
* The number of equations match the number of uwkiso
* No equation is a multiple of another equation in the system.
A linearly independent system produces only one, or unique, solution for eachwankso
demonstrated in Figure 10Y might encounter systems with duplicates of equations, such as the
systemx+y = 1 and2x+2y = 2. Such a system produces an infinite numbexk @&ndy
solutions and is callelihearly dependent

Denote the resulting “matrix form” of the equations as

Ku=p (3)

where matrix multiplication and equality are implied. Each term is described:belo
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System : . , . :
Kli/ - p Thesystem of equationKu = p, is a set of simultaneous linear equations.
Coeficient
Matrix - , : .
The coeficient matrix, K, collects the constants in front of unkwnts:
e Square matrice¥ , have same the number of unkmoes and equations.
K = | 2—2|| « Elements of these matrices typically reflect modelyspfal parameters.
-2 5
Source
Vector . : p "
Thesource ector, p, applies modeled inputs or “sources” to the system:
* Inthe spring gample, these source terms are loads.
p= 10 » Source walues are typically krvan or assumed.
20
Solution
Vector | Thesolution \ector, u, collects the unknen variables you wish to find:
* The matrix formulation separates kmoand unknwn variables.
u * Manipulating the codtient matrix and sourceeetor with linear algebra
u= |1 techniques lik Gaussian elimination (Fig. ) finds the unkns.
)

MANUAL SOLUTION

As demonstrated in this document, you can perform Gaussian eliminationddismlsystem of
equations that Eq. 3 represents. Butywhould you use the matrix formulation@ctbrs and
matrices store equation data in a compact form that computer programs can readily manipulate.
Though more compietechniquesyast, you can sol the matrix formulation withow reduction

which is a method that mimics Gaussian elimination as demonstratatlen2l

The following steps illustrate m reduction:

Stepld: Cast the equations into a matrix formulation.

Stepld: Rewrite the system into a matrix that includes the souemtov written to the right.
You may drav a \ertical bar to semras a reminder to separate the focieht matrix.

Step: Row reduction dictates that you may add & to ary other rav. So, add the top vo

to the bottom ra. This process is equalent to adding an equation to another equation within
the gven system.

Stepd: Row reduction also dictates you can multiplyyaow by ary constant. So, dide the
top rov by 2, and diide the bottom n@ by 3. Note that you can perform this action in
conjunction with adding mgs to each other

StepO: You keep performing ne reduction until the co&€ient matrix becomes theentity
matrix, a matrix with alues of 1 on the diagonal and O elkere. The final alues in the
right-hand column of the matrix represent the solutiectar

Note that a linearly dependent system of equations will yield at least wrtbabcontains only
values of zero.

Excerpt fromintroduction to Maple 4



TABLE 2: ROow REDUCTION

u; +0u, = 15

Step Matrix Formulation Operations Results
—2 S |uy 120 2u,—-2u, = 10 2u,—2u, = 10
|:| 5 2110 —2u; +5u, = 20 —2u; +5u, = 20
[—2 5 ‘ 20]
2u;—-2u, = 10
D 2 2|10 . —2u; +5u, = 20 2u; —2u, = 10
0 3|30 3u, = 30
- - Ouy +3u, = 30
1 _ -
|:| 1 1 ‘ 57 §(2u1—2u2— 10) - u;-u, =5 Uj—Uy = 5
0 1119] 2(0u; +30, = 30) - u, = 10 up = 10
u—-u, =5
D 10|15 .\ u, = 10 u, = 15
01|10 —_— u, = 10
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