
1

1

Interfaces
Sec. 12.1 contains this material. Corresponding lectures on
ProgramLive CD is an alternative way to learn the material.

Top finalists from a real-life “Dilbert quotes contest”

As of tomorrow, employees will be able to access the building only using
individual security cards. Pictures will be taken next Wednesday and employ-
ees will receive their cards in two weeks." (Fred Dales, Microsoft)
I need an exact list of specific unknown problems we might encounter. (Lykes
Lines Shipping)

Email is not to be used to pass on information or data. It should be used
only for company business. (Accounting manager, Electric Boat Company)
This project is so important, we can't let things that are more important
interfere with it. (Advertising/Marketing manager, United Parcel Service)

Doing it right is no excuse for not meeting the schedule. (Plant manager, Delco
Corporation)

2

Interface: used to enforce that a
class overrides certain methods

/** Komparable provides a method for comparing two objects */

public interface Komparable {

 /** = a negative integer if this object < c,

 = 0 if this object = c,

 = a positive integer if this object > c.

 Throw a ClassCastException if c cannot be cast to the

 class of this object. */

 public int kompareTo(Object c);

}

Body replaced by ;

Every class that “implements” Komparable
must override kompareTo

3

public class Date implements Komparable {
 public int year; /** year. */
 public int month; /** month, in the range 1..12. */
 public int day; /** The day of the month. */
 /** = -1, 0, or +1 if this date comes before, is same as, or comes after c.
 Throw a ClassCastException if c cannot be cast to Date.*/
 public int kompareTo(Object c) {
 if (!(c instanceof Date))
 throw new ClassCastException("argument is not a Date");
 Date d= (Date) c;
 if (year == d.year && month == d.month && day == d.day)
 return 0;
 if (year < d.year || (year == d.year && month < d.month) ||
 (year == d.year && month == d.month && day < d.day))
 return -1;
 return 1;
 }

class will contain other methods

4

You can use an interface as a type

/** Swap b[i] and b[j] to put larger in b[j]
 */
 public static void swap(int [] b, int i, int j) {

}

if (b[j].kompareTo(b[i]) < -1) {
 Komparable temp= b[i];
 b[i]= b[j];
 b[j]= temp;
}

Komparable
Use Komparable.kompareTo to compare

Polymorphism: the quality
or state of existing in or
assuming different forms

This parametric polymorphism allows us to use swap to do its
job on any array whose elements implement Komparable.

polygon
polygamy
polychord
polydemic

polytechnic

5

Interface java.util.Comparable

/** Comparable requires method compareTo
 and method equals*/
public interface Comparable {
 /** = a negative integer if this object < c,
 = 0 if this object = c,
 = a positive integer if this object > c.
 Throw a ClassCastException if c cannot
 be cast to the class of this object. */
 int compareTo(Object c);

}

Classes that
implement
Comparable
Boolean
Byte
Double
Integer
…
String
BigDecimal
BigInteger
Calendar
Time
Timestamp
…

6

Form of an interface declaration

/** comment*/
public interface <interface-name> {
 /** method spec for function*/
 int compareTo(…);

 /** method spec for procedure */
 void compareTo(…);

 /** explanation of constant x*/
 int x= 7;

}
Every field is implicitly public, static, and final.
You can put these modifiers on them if you wish.

Methods are implicitly public.
You can put the modifier on if
you wish.

Use “;” instead of a body

2

7

A class can implement several interfaces

/** comment*/
public class C implements Inter1, Inter2, Inter3{
 …
}

The class must override all methods declared in
interfaces Inter1, Inter2, and Inter3.

