CS100J 10 April 2005

Rectangular arrays and ragged arrays. Secs. 9.1-9.3
Do as many of the exercises on pp. 311-312 as you can to get familiar with concepts and develop a skill. Practice in DrJava! Test your methods, both by hand and on computer!

A Billion. The next time you hear someone in government rather casually use a number that includes the word "billion", think about it.

- A billion seconds ago was 1976.
- A billion minutes ago Jesus was alive.
- A billion hours ago our ancestors were living in the Stone Age.
- A billion days ago no creature walked the earth on two feet
- A billion dollars lasts less than 8 hours at the rate our government spends it.

1,000,000,000

0123
d $\quad 0 \begin{array}{lll}5 & 4 & 7\end{array}$
rectangular array: 5 rows and 4 columns
$\left.1 \begin{array}{llll}5 & 8 & 9 & 7\end{array} \right\rvert\, \quad$ Type of d is int[][] ("int array array",
$1 \left\lvert\, \begin{array}{llll}5 & 1 & 2 & 3\end{array}\right.$
$2 \left\lvert\, \begin{array}{llll}4 & 1 & 2 & 9 \\ 6 & 7 & 8 & 0\end{array}\right.$
3
To declare variable d: number of rows int d[][] .
To create a new array and assign it to d: $\mathrm{d}=$ new int[5][4];
To reference element at row r column c :
$\mathrm{d}[\mathrm{r}][\mathrm{c}]$
number of cols

```
/** = sum of first elements of rows of d. e.g. for array to
    right, it's 5 + 4+5+4+6. */
public static int sum0(int[][] d) {
    int }\textrm{x}=0\mathrm{ ;
    // inv: x = sum of first element of rows d[0..r-1]
    for (int r= 0; r != d.length; r=r+1) {
        x=x + d[r][0];
    }
    // x = sum of first element of rows d[0..d.length-1] 4
    return x;
}
```

Pattern for processing all the elements of an array	
Row-major order (first row 1, then row 2, etc.)	
// Process elements of b[][] in row-major order	
// inv: rows $0 . . \mathrm{r}-1$ have been processed. // In row $\mathrm{r}, \mathrm{b}[\mathrm{r}, 0 . . \mathrm{c}-1]$ have been processed	
```for (int r=0; r != b.length; r=r + 1) for (int c= 0; c != b[r].length; c= c+1)}```	
Process $\mathrm{b}[\mathrm{r}][\mathrm{c}]$	
\}	
5	

```
/** = a String rep of b[][] (as in an array initializer) */
public static String toString(int b[][]) {
 String s="{"
 // inv: Rows 0..r-1 have been appended to s */
 for (int r=0; r != b.length; r=r + 1) {
 // Add row r to s
 if (r != 0) s= s + ", "; s= s + "{";
 // inv: the partial row b[r][0..c-1] has been added to s
 for (int c=0; c != b[r].length; c=c + 1) {
 if (c != 0) s=s + ",";
 s=s + b[r][c];
 }
 s= s + "}";
 return s + "}";
} }
```

How multi-dimensional arrays are stored: ragged arrays
int b[][]$=\{\{2,3,4\},\{5,1,2\}$

$b$ is a one-dimensional array of b.length elements
Its elements are one-dimensional arrays
$\mathrm{b}[0]$ is a one-dimensional array of ints of length $\mathrm{b}[0]$.length. Must all these arrays have the same length? No!

How multi-dimensional arrays are stored: ragged arrays
int[][] b; Declare variable $b$ of type int [][]
$b=$ new int[2][] Create a one-dim. array of length 2 and store its name in $b$. Its elements are null, have type int[]
$\mathrm{b}[0]=$ new int[] $\{2,3,4\}$; Create int array, store its name in $\mathrm{b}[0]$. $\mathrm{b}[1]=$ new int[] $\{5,6\}$; Create int array, store its name in $\mathrm{b}[1]$.


2
Pascal's Triangle


Entry $p[i][j]$ is the number of ways $j$ elements can be chosen from a set of size i !
$p[i][j]=" i$ choose $j "=\binom{i}{j}$
recursive formula:
for $0<i<j, \quad p[i][j]=p[i-1][j-1]+p[i-1][j]$

Method to compute first $\mathbf{r}$ rows of Pascal's Triangle in a ragged array
/** Return ragged array of first n rows of Pascal's triangle.
Precondition: $0 \leq \mathrm{n} *$
Public static int[][] pascalTriangle(int $n$ )
int[][] b= new int[n][]; // First n rows of Pascal's triangle
/ invariant: rows $0 . .1-1$ have been created
for (int $\mathrm{i}=0$; i ! $=\mathrm{b}$. length; $\mathrm{i}=\mathrm{i}+1$ ) \{
// Create row i of Pascal's triangle $\mathrm{b}[\mathrm{i}]=$ new $\operatorname{int}[\mathrm{i}+1]$;
// Calculate row i of Pascal's triangle
$\mathrm{b}[\mathrm{i}][0]=1$;
// invariant b[i][0..j-1] have been created
for (int $\mathrm{j}=1 ; \mathrm{j}<\mathrm{i} ; \mathrm{j}=\mathrm{j}+1)\{$ $\mathrm{b}[\mathrm{i}][\mathrm{j}]=\mathrm{b}[\mathrm{i}-1][\mathrm{j}-1]+\mathrm{b}[\mathrm{i}-1][\mathrm{j}]$; \} $\mathrm{b}[\mathrm{i}][\mathrm{i}]=1$;
\}
return b;
\}
\} 12

