CS100J 27 May 2007

Developing arrays algorithms. Reading: 8.5

Haikus (5-7-5) seen on Japanese computer monitors

Yesterday it worked
Today it is not working. Windows is like that.
A crash reduces Your expensive computer
To a simple stone.
Three things are certain: Death, taxes and lost data. Guess which has occurred?

Serious error.
All shortcuts have disappeared.
Screen. Mind. Both are blank.
The Web site you seek
Cannot be located, but
Countless more exist.
Chaos reigns within.
Reflect, repent, and reboot.
Order shall return.

Developing algorithms on arrays

You will develop several important algorithms on arrays. With each, we specify the algorithm by giving its precondition and postcondition as pictures.

Then, you draw the invariant by drawing another picture that "generalizes" the precondition and postcondition, since the invariant is true at the beginning and at the end.

Four loopy questions - memorize them:

1. How does loop start (how to make the invariant true)?
2. When does it stop (when is the postcondition true)?
3. How does repetend make progress toward termination?
4. How does repetend keep the invariant true?

Getting an invariant as picture:

Combine pre- and post-condition
Finding the minimum of an array

Binary search: Vague spec: Look for v in sorted array segment $\mathrm{b}[\mathrm{h} . . \mathrm{k}]$. Better spec:
Precondition: $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ is sorted (in ascending order).
Store in i to truthify:
postcondition: $\mathrm{b}[\mathrm{h} . \mathrm{i}]<=\mathrm{v}$ and $\mathrm{v}<\mathrm{b}[\mathrm{i}+1 . \mathrm{k}]$
Below, the array is in non-descending order

Getting an invariant as picture:
Combine pre- and post-condition
Dutch national flag. Array

Remove adjacent duplicates

change: $\quad \mathrm{b}$| 0 |
| :--- |
| 122242278999 |

into b | O | h | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 4 | 2 | 7 | 8 | 9 | 8 | 9 | 9 | 9 | don't care what is in $\mathrm{b}[\mathrm{k}+1 . . \mathrm{n}]$

postcondition:
$\mathrm{b}[0 . . \mathrm{h}]=$ initial values in $\mathrm{b}[0 . . \mathrm{n}]$ but with adj dups removed

