CS100J 11 March 2008

The while loop and assertions
Read chapter 7 on loops.
The lectures on the ProgramLive CD can be a big help.

Quotes for the Day:

Instead of trying out computer programs on test cases until they are debugged one should prove that they have the desired properties.
John McCarthy, 1961, A basis for a mathematical theory of computation.
Testing may show the presence of errors, but never their absence.
Dijkstra, Second NATO Conf. on Software Engineering, 1969.
A week of hard work on a program can save you $1 / 2$ hour of thinking.
Paul Gries, CS, University of Toronto, 2005

The while loop: syntax

while (<condition>)
<condition>: a boolean expression.
<repetend> <repetend>: a statement.
while (<condition> \{
BUT: We almost always make the sequence of declarations <repetend> a block.
and statements
\}

For loop, corresponding while loop
<initialization>;
for (int $k=b ; k<=c ; k=k+1)\{$ Process k
\}
<initialization>;
int $\mathrm{k}=\mathrm{b}$;
while ($\mathrm{k}<=\mathrm{c}$) \{
Process k;
$\mathrm{k}=\mathrm{k}+1$;

\}

int $\mathrm{k}=5$;
while ($\mathrm{k}<=8$) $\{$
System.out.println(k*k); $\mathrm{k}=\mathrm{k}+1$;
\}
Trace execution of the loop:
Study section 7.1.2 shows
you how to "trace" execution
you how to
of a loop.
execute the while loop:
Systor.out.prints(5)
(1) Evaluate condition $\mathrm{k}<=8$; if false, stop execution
System.out.println(7*7)
(2) Execute the repetend.
(3) Repeat again from step (1)

The while loop: 4 loopy questions

// Set c to the number of 'e's in String s

int $\mathrm{n}=\mathrm{s}$.length();	1. How does it start? (what is the initialization?)
$\mathrm{c}=0$;	
// invariant: $\mathrm{c}=$ number of 'e's in s[0..k-1]	
$\begin{aligned} & \text { for (int } k=0 ; k<n ; k=k+1)\{ \\ & \text { if }\left(\mathrm{s} . \operatorname{char} \operatorname{At}(\mathrm{k})==^{\prime} \mathrm{e}^{\prime}\right) \end{aligned}$	2. When does it stop? (From the invariant and the falsity of loop condition, deduce that result holds.)
$\mathrm{c}=\mathrm{c}+1 ;$	
\}	3. How does it make progress toward termination?
$/ / \mathrm{c}=$ number of 'e's in s[0..n-1]	
	4. How does repetend keep invariant true?

The while loop: 4 loopy questions. Allows us to focus on one thing at a time. Separate our concerns.
// Set c to the number of 'e's in String s.

$\begin{aligned} & \text { int } \mathrm{n}=\mathrm{s} \text {.length(); } \\ & \mathrm{c}=0 ; \mathrm{k}=0 \text {; } \end{aligned}$	1. How does it start? (what is the initialization?)
// invariant: $\mathrm{c}=$ number of 'e's in s[0..k-1]	
$\begin{aligned} & \text { while }(\mathrm{k}<\mathrm{n}) \text { \{ } \\ & \qquad \begin{array}{l} \text { if }\left(\mathrm{s} . \operatorname{charAt}(\mathrm{k})==^{\prime} \mathrm{e}\right. \text { ') } \\ \mathrm{c}=\mathrm{c}+1 \end{array} \end{aligned}$	2. When does it stop? (From the invariant and the falsity of loop condition, deduce that result holds.)
$\}^{\mathrm{k}}=\mathrm{k}+1$;	3. How does it make progress toward termination?
$/ / \mathrm{c}=$ number of 'e's in s[0..n-1]	4. How does repetend keep invariant true?

Develop loop to store in x the sum of $\mathbf{1 . . 1 0 0}$.

We'll keep this definition of x and k true:

$$
x=\text { sum of } 1 . . k-1
$$

1. How should the loop start? Make range 1..k-1 Four loopy empty: $\mathbf{k}=\mathbf{1 ;} \mathbf{x}=\mathbf{0}$;
2. When can loop stop? What condition lets us
know that x has result? When $\mathrm{k}=\mathbf{= 1 0 1}$
3. How can repetend make progress toward termination? $k=k+1$;
4. How do we keep def of x, h, k true? $x=x+k$;
$\mathrm{k}=1 ; \mathrm{x}=0$;
// invariant: $x=$ sum of $1 . .(k-1)$
while ($k!=101$) \{
$\mathrm{x}=\mathrm{x}+\mathrm{k}$;
$\mathrm{k}=\mathrm{k}+1$;
\}
$/ /\{x=$ sum of $1 . .100\}$

$$
x / y=q+r / y \quad 21 / 4=4+3 / 4
$$

Property: $x=q^{*} y+r$ and $0 \leq r<y$

```
\(1 * *\) Set q to and r to remainder.
    Note: \(\mathrm{x}>=0\) and \(\mathrm{y}>0 * /\)
int \(\mathrm{q}=0\); int \(\mathrm{r}=\mathrm{x}\);
\(/ /\) invariant: \(x=q * y+r \quad\) and \(0 \leq r\)
while ( \(r>=y\) ) \{
    \(r=r-y ;\)
    \(\mathrm{q}=\mathrm{q}+1\);
\}
\(/ /\{\mathrm{x}=\mathrm{q} * \mathrm{y}+\mathrm{r}\) and \(0 \leq \mathrm{r}<\mathrm{y}\}\)```

