
1

1

CS100J Wrapper classes, stepwise refinement 19 Feb
When insults had class
"A modest little person, with much to be modest about." Churchill
"I never killed a man, but I read many obituaries with great pleasure." Clarence Darrow
"Thanks for sending me a copy of your book; I'll waste no time reading it." Moses Hadas
"He can compress the most words into the smallest idea of any man I know." Abraham
Lincoln
"I didn't attend the funeral, but I sent a nice letter saying I approved of it." Mark Twain
"I am enclosing two tickets to the first night of my new play. Bring a friend... if you have
one." George Bernard Shaw to Winston Churchill
"Cannot possibly attend first night, will attend second... if there is one." Churchill
"I feel so miserable without you; it's almost like having you here." Stephen Bishop
"He is a self-made man and worships his creator." John Bright
"I've just learned about his illness. Let's hope it's nothing trivial." Irvin Cobb
"There's nothing wrong with you that reincarnation won't cure." Jack Leonard
"He has the attention span of a lightning bolt." Robert Redford
"He inherited some good instincts from his Quaker forebears, but by diligent hard work,
he overcame them." James Reston (about Richard Nixon)

Prelim 7:30-9:00 Thurs, 21 Feb, Olin 155.

2

Wrapper classes. Read
Section 5.1 of class text

a0
Integer??? 5

At times, we wish to deal
with an int value as an
object.

"Wrapper class" Integer
provides this capability.

An instance of class Integer contains, or "wraps", one int value.

You can't change the value. The object is immutable.

Integer(int) Integer(String)
toString() equals(Object) intValue()

Instance methods: constructors, toString(), equals, intValue.

Static components:
MIN_VALUE MAX_VALUE
toString(int) toBinary(int)
valueOf(String) parseInt(String)

Static components provide extra help.

3

Each primitive type has a corresponding wrapper class. When
you want to treat a primitive value of that type as an object,
then just wrap the primitive value in an object of the wrapper
class!

Primitive type Wrapper class
int Integer
long Long
float Float
double Double
char Character
boolean Boolean

Each wrapper class has:

• Instance methods, e.g.
constructors, toString, and
equals

• Useful static constants and
methods.

You don't have to memorize the methods of the wrapper classes. But
be aware of them and look them up when necessary. Use Gries/
Gries, Section 5.1, and ProgramLive, 5-1 and 5-2, as references.

4

Anglicize integers.
Last time, we started looking at larger numbers first. We didn't finish.
This time, we start looking at smaller numbers first. This may be better
for you because it may be easier, more straightforward.

We figure out what�
to do for

0 < n < 19.
20 <= n < 100
100 <= n < 1,000
1000 <= n < 1,000,000

Mañana principle. "Put off to tomorrow".

When it is useful, "stub in" a method, with
a good spec, to be written later, and write
calls on it.

Reasons to do so:

(a) Same computation is required in
several places.

(b) Keep one method body from getting to
long and cumbersome.

5

/** = integer n, in words.
 Precondition: 0 < n < 1,000,000. */
public static String ang(int n) {

}

Note: As we develop the body of function ang, we may find the need
to anglicize some other integer m. W can call function ang to do it —
as long as m < n. The reason for this restriction will be seen later.
So, within ang, we can call ang. This is called recursion. We study
recursion in the next two lectures.

Sounds strange? You can see
that it works if you
remember how a function
call is executed:

1.  Draw frame for the call.
2.  Assign args to parameters.
3.  Execute method body.
4.  Erase the frame for the call and

return the value of the call.
6

stepwise refinement
/** An instance represents the time of day in a time zone, in terms of
hours, minutes, and seconds. The implemented time zones are:

 GMT: Greenwich Mean Time, GMT
 BST: British Summer Time, GMT+1
 EST: Eastern Standard Time, GMT-5 hours (NY)
 EDT: Eastern Daylight Savings Time, GMT-4 hours (NY)
 CST: Central Standard Time, GMT-6 hours (Chicago)
 CDT: Central Daylight Savings Time, GMT-5 hours (Chicago)
 MST: Mountain Standard Time, GMT-7 hours (Phoenix)
 MDT: Mountain Daylight Savings Time, GMT-6 (Phoenix)
 PST: Pacific Standard Time, GMT-8 hours (LA)
 PDT: Pacific Daylight Saving Time, GMT-7 hours (LA)
 IND: India time, GMT+5:30 hours (New Delhi)

 India (IND) is included only to show that times are not always on
 hourly boundaries from GMT.

2

7

/** A time may appear negative or greater than 24 hours.
 This is because we allow a conversion of a time from one time zone
to another, and a time of 0 hours GMT is -7 hours PDT (for example),
while a time of 23:59 GMT is 29:29 IND.
 An instance of the class can show the time using a 24-hour clock
or using the AM-PM designation; it is the user's choice. */
public class TimeJ {
 public static final String GMT= "GMT";
 public static final String BST= "BST";
 public static final String EST= "EST";
 public static final String EDT= "EDT";
 public static final String CST= "CST";
 public static final String CDT= "CDT";
 public static final String MST= "MST";
 public static final String MDT= "MDT";
 public static final String PST= "PST";
 public static final String PDT= "PDT";
 public static final String IND= "IND"; 8

/** Class invariant: Variable time is a time in seconds on a day in
 time zone zone. The time may be negative or greater than 24
 hours, as indicated in class specification (which says why). Field
 display12Hr has the meaning
 "the time should be viewed as a 12-hour clock”.
 */
 private int time= 0;
 private String zone= "GMT";
 private boolean display12Hr= false;

9

/** Constructor: instance with time 0 in GMT and a 24-hour clock */
public TimeJ() { }

/** Constructor: s seconds, GMT, with 24-hour clock */
public TimeJ(int s)
 { this(); time= s; }

/** Constructor: s seconds, zone z, with 12-hour clock iff b is true*/
public TimeJ(int s, String z, boolean b) {
 this(s);
 zone= z;
 display12Hr= b;
 }

/** Constructor: h hours, m minutes, and s seconds in zone z.
 The time should be >-24 hours and <+48 hours; if not, 0 is used.
 If z is not a legal zone, make it GMT.
 The time should be displayed as am-pm iff b is true */
public TimeJ(int h, int m, int s, String z, boolean b) {
 } 10

 /** = a string representation of the time. This is basically in the
 form "hours:minutes:seconds zone", but it differs depending on
 whether a 12- or 24-hour clock is wanted.
 We describe the difference with examples:

 In AM-PM mode, output could be: 06:20:05AM DST
 or 06:20:05PM DST
 In 24-hour mode: 06:20:05 DST or 18:20:05 DST

 If the time is negative or at least 24 hours, print it using the 24-hour
 mode, even if 12-hour mode is indicated.
 */
public String toString() {
 int sec; // Field s contains the time in seconds. Local
 int min; // variables hr, min, and sec will contain the corres-
 int hr; // ponding time broken into hours, minutes and seconds.
 String result= ""; // The string to be returned
 boolean amPM; // = "give description in AM-PM format”

