
1

1

CS100J 12 February 2008
More on Methods. Developing methods.

Also: The inside-out rule; and the use of this and super

Read sec. 2.5 on stepwise refinement

Listen to PLive activities, 2.5.1 -- 2.5.4!

Quotes that relate to specifying a method before writing it.
A verbal contract isn't worth the paper it's written on.
What is not on paper has not been said.
If you don't know where you are going, any road will take you there.
If you fail to plan you are planning to fail.
Don’t try to solve a problem until you know what the problem is.

Prelim: Thurs Feb 21,
7:30 to 9:00

Review: Sun. 17 Sep
1–3, Phillips 101

2

Inside-out rule
Inside-out rule in most programming languages (see p. 83):

Code in a construct can reference any of the names declared or defined
in that construct, as well as names that appear in enclosing constructs
(unless a name is declared twice, in which case the closer one prevails).

File drawer for class Elephant

Elephant
a0

name

getName()
 {return name;}

Elephant
a0

name

getName()
 {return name;}

ElephantPop

3

Inside-out rule
Inside-out rule in most programming languages (see p. 83):

Code in a construct can reference any of the names declared or defined
in that construct, as well as names that appear in enclosing constructs
(unless a name is declared twice, in which case the closer one prevails).

File drawer for class Elephant

setName(String n) {
 name= n;
}

Elephant
a0

 n

Elephant Pop

name

setName(String n) {
 name= n;
}

Elephant
a0

 n
name

4

Inside-out rule
Inside-out rule in most programming languages (see p. 83):

Code in a construct can reference any of the names declared or defined
in that construct, as well as names that appear in enclosing constructs
(unless a name is declared twice, in which case the closer one prevails).

File drawer for class Elephant

Elephant Pop

setName(String name) {
 name= name;
}

Elephant
a0

name

name

setName(String name) {
 name= name;
}

Elephant
a1

name

name

5

About using this and super
Within an object, this refers to the name of the object itself,

File drawer for class Elephant

Elephant Pop

setName(String name) {
 this.name= name;
}

Elephant
a0

name

name

setName(String name) {
 this.name= name;
}

Elephant
a1

name

name

In folder a0, this refers
to folder a0.

In folder a1, this refers
to folder a1.

6

About using this and super
Within a subclass object, super refers to the object —except the
lowest partition.

toString() { … }

otherMethod { …
 … super.toString() …
}

Object
a1

Elephant

method equals

method toString
Because of the
keyword super, this
calls toString in the
Object partition.

2

7

Strings String s= "abc d"; s s2s2
String

 abc d
01234

length() charAt(i)
substring(b,e) substring(b)
equals(s1) trim()
indexOf(c) indexOf(s)
toLowerCase() startsWith(s)

Text, pp. 175–181, discusses Strings
Look in CD ProgramLive
Look at API specs for String

s.length() is 5 (number of chars)
s.char(3) is 'c' (char at position 3)
s.substring(2,4) is "c "
s.substring(2) is "c 4"
" bcd ".trim() is "bcd" (trim beginning
 and ending blanks)

DO NOT USE == TO TEST STRING EQUALITY!

s1 == s2 tests whether s1 and s2 contain the name of the same object,
not whether the objects contain the same string.

Use s1.equals(s2)

8

Developing another string function
/** Precondition: s contains at least one integer (without sign), and they are
 separated by commas (blanks are permissible after a comma). There are
 no blanks at the beginning and end of s.
 = s but with its first integer removed (remove also following comma,
 if there is one, and following blanks).
 E.g. s = "52, 0, 76385" Return "0, 76385"
 s = "000, 11" Return "11"
 s = "00" Return ""
*/
public static String removeInt(String s)

9

Developing another string function
/** Precondition: s contains at least one integer (without sign), and they are
 separated by commas (blanks are permissible after a comma). There are
 no blanks at the beginning and end of s.
 If the first integer is 0, return s but with its first integer and following ‘,’
 and blanks removed; otherwise, return s.
 E.g. s = "52, 0, 76385" Return s,
 s = "000, 11" Change s to "11".
 s = "00" Change s to "".*/
public static String removeZero(String s)

10

Anglicizing an integer
/** = the English equivalent of n, for 1 <= n < 1,000
 e.g. ang(3) is “three”
 ang(641) is “six hundred forty one” */
public static String ang(int n) {

}

The rest of this lecture is devoted to the beginning of
the development of an algorithm for anglicizing an
integer.

The final program will be on the course website after
Thursday’s lecture.

11

Principles and strategies
Principle: Write a method spec before you write the body.

Mañana Principle: Write the specification of a method and
“stub” it in, so that it can be compiled and produces something
that allows further development. Put off its complete
development until later. (Mañana means tomorrow, or an
indefinite time in the future.)

Compile often: Compiling often will help you catch syntax
errors quickly and easily.

Intersperse program development with testing: The worst
thing you can do is to write a complete program and then
begin testing. Because if there is an error, you have no idea
where it is and how to find it. However, if you test each
method as completely as possible after writing it, then any
errors should be localized to that method.

