

CS100J Lab 10 Developing loops from invariants 1-2 April 2008 1

This lab gives you practice with developing loops from invariants and with the array algorithms that you have to
know for prelim III. Your lab instructor and any consultants that are present will help you. Answers are at the end of
this document, but don’t look at an answer until you have done an exercise.

In our sample answers, we don’t draw all the pictures that are required. We suggest that if an invariant is not
drawn as a picture, you draw it as a picture before continuing to work on the problem. If you need help, ask your TA
or consultant.

When you are finished, show your TA what you have done. If you finish at least exercises 1-4, your lab instruc-
tor will mark you down as having completed the assignment. If you don’t finish that much, finish exercises 1-4 by
the next week and show them to your TA at the beginning of the lab next week. In any case, try to do all the exer-
cises because that will help you understand and gain a skill in solving such problems.

If you finish these ahead of time and you want something else to do, work on assignment A7.

1. Give a formula for the number of values in the segment b[x..y-1]:

If you are not sure what the formula is, then ask, and memorize it. The formula is a useful tool, and knowing it will
help you develop loops that deal with ranges of integers.

2. Draw an array b that satisfies these conditions b[0..i] >= 5, b[i+1..j] = 6, b[j+1..] <= 5.

3. Below is a precondition and postcondition for the algorithm to find the minimum of an array b[h..k]. Below that
are four different loop invariants for the problem. Write a loop (with initialization) for each one.

Precondition: h <= k
Postcondition R: b[x] is the minimum of b[h..k]

(a) invariant P1: b[x] is the minimum of b[h..t]
(b) invariant P2: b[x] is the minimum of b[h..s–1]
(c) invariant P3: b[x] is the minimum of b[r..k]
(d) invariant P4: b[x] is the minimum of b[w+1..k]

Below are the postcondition and invariants drawn as pictures. Use either the text versions or the pictures.

b
 x y

R: h k

 b b[x] is the minimum of these

P1: h t k

 b b[x] is the minimum of these

P2: h s k

 b b[x] is the minimum of these

P3: h r k

 b b[x] is the minimum of these

P4: h w k

 b b[x] is the minimum of these

CS100J Lab 10 Developing loops from invariants 1-2 April 2008 2
4. The purpose of these algorithms is to swap the values of array b and to store a value in k so that the postcondition
given below is true. Array b is not necessarily sorted initially. Besides the postcondition, we give three different
invariants; write a loop (with initialization) for each one. Before you begin, write the precondition, postcondition,
and invariant as pictures.

Precondition Q: b[0..] = ? —i.e. we know nothing about the values in b.
Postcondition R: b[0..k] ≤ 6 and b[k+1..] > 6

 (a) invariant P1: b[0..h] ≤ 6 and b[k+1..] > 6
 (b) invariant P2:...b[0..k] ≤ 6 and b[t..] > 6
 (c) invariant P3: .. b[0..s–1] ≤ 6 and b[k+1..] > 6

5. Write selection sort, to sort array segment b[h..k], in several ways, using the invariants provided below. Before
you do each one, write the invariant as a picture.

 postcondition: b[0..b.length–1] is sorted (in ascending order)

 (a) invariant P1: b[0..k–1] is sorted, and b[0..k–1] ≤ b[k..]
 (b) invariant P2: b[0..h] is sorted, and b[0..h] ≤ b[h+1..]
 (c) invariant P3: b[s+1..b.length–1] is sorted, and b[0..s] ≤ b[s+1..]

6. Below is the precondition and postcondition for the partition algorithm. Below that are three different invariants.
Develop the partition algorithm using each of the three invariants. Before you start, write all assertions as pictures.
This algorithm manipulates an array segment b[h..k].

Precondition: b[h] = x for some x AND (this is just so we can talk about what is in b[h] initially;
 h ≤ k x is not a program variable.)
Postcondition: b[h..j-1] ≤ x = b[j] < b[j+1..k]
(a) invariant P1: b[h..j-1] ≤ x = b[j] ≤ b[t..k]
(b) invariant P2: b[h..j-1] ≤ x = b[j] ≤ b[q+1..k]
(c) invariant P3: b[h..j-1] ≤ x = b[j] ≤ b[j+1..n-1]

Answers to questions.

1. y – x

2.

 b >= 5 = 6 <= 5

3. (a) t= h; x= t; (b) s= h+1; x= h;
while (t != k) { while (s-1 != k) {
 if (b[t+1] < b[x]) x= t+1; if (b[s] < b[x]) x= s;
 t= t + 1; s= s + 1;
} }

(c) r= k; x= r; (d) w= k–1; x= k;
 while (r != h) { while (w+1 != h) {
 if (b[r–1] < b[x]) x= r–1; if (b[w] < b[x]) x= w;
 r= r–1; w= w–1;
 } }

4. (a) h= –1; k= b.length–1; (b) k= –1; t= b.length;
 // invariant: P1 // invariant: P2
 while (h != k) { while (t != k+1) {
 if (b[h+1] <= 6) h= h+1; if (b[k+1] <= 6) k= k+1;
 else { Swap b[h+1] and b[k]; k= k–1; } else { Swap b[k+1] and b[t–1]; t= t–1; }
 } }

0 i j

CS100J Lab 10 Developing loops from invariants 1-2 April 2008 3

(c) s= 0; k= b.length–1;
 // invariant: P3
 while (s–1 != k) {
 if (b[s] <= 6) s= s+1;
 else { Swap b[s] and b[k]; k= k–1; }
 }

5. (a) k= 0; (b) h= –1;
 // invariant: P1 // invariant: P2
 while (k != b.length] { while (h != b.length–1]) {
 Set t to the index of the minimum Set t to the index of the minimum
 of b[k..b.length–1]; of b[h+1..b.length–1];
 Swap b[k] and b[t]; k= k+1; Swap b[h+1] and b[t]; h= h+1;
} }

(c) s= b.length–1;
 // invariant: P3
 while (s != –1) {
 Set t to the index of the maximum of b[0..s]
 Swap b[t] and b[s]; s= s–1;
 }

6. (a) j= h; t= k+1; (b) j= h; q= k;
 // invariant: P1 // invariant: P2
 while (j != t-1) { while ((j != q){
 if (b[j+1] <= b[j]) { if (b[j + 1] <= b[j]) {
 Swap b[j] and b[j+1]; Swap b[j] and b[j + 1];
 j= j+1; j= j + 1;
 else { else {
 t= t – 1; Swap b[q] and b[j+1]
 Swap b[t] and b[j+1] q= q – 1;
 } }
 } }

(c) j= h; n= j+1;
 // invariant: P3
 while (n <= k) {
 if (b[n] <= b[j]) {
 Swap b[n] and b[j+1]; n= n+1;
 Swap b[j] and b[j+1]; j= j+1;
 } else {
 n= n+1;
 }
}

