
 1

CS100J Spring 2008 Assignment A7. Due Friday, 2 May, on the CMS

0. Introduction
This assignment deals with .jpg images. You will learn about how images are stored; write code to transpose im-

ages; and learn about filtering images. You will learn how a text message hidden in an image. You will see how
GUIS (Graphical User Interfaces) are constructed in Java. Finally, you will have practice with loops and one- and
two-dimensional arrays.

Download either file a7.zip OR the files indicated on the course website and put them into a new folder. Two
images are included. Put everything in the same folder. To get an idea of what the program does, do this:

(1) Open file ImageGUI in DrJava and compile it.
(2) In the interactions pane, type this: j= new ImageGUI(); A dialog window will open. Navigate to a

folder that contains a jpg file and select it. A window will open, with two versions of the image, some but-
tons, and a text area. The left image will not change; it is the original image. The right image will change as
you click buttons.

(3) See what buttons invert and hor reflect do. After any series of clicks on these, you can always click
button restore to get back the original file.

(4) You can try buttons transpose and filter but they won’t work until you write code to make them work.
We now discuss the classes in this assignment and also images. You don’t have to learn all this by heart, but you

would do well to study the code, being conscious of how precise the specs are and how well the Java code is written.
Section 7 explains what you have to do for this assignment.

1. Separation of concerns
It is important to organize the parts of a program in a logical coherent way, in which it is clear what each part is

responsible for and in which interactions are kept reasonable. The larger and more complicated the task of the pro-
gram, the more important it is to have a good organization.

This program has two main functions: manipulating an image and providing a GUI. These two issues should be
separated as much as possible in the program.

An object of class java.awt.Image maintains an image. Our own class ImageMap has a field that contains an
Image and provides additional methods for manipulating it, allowing one to view it as a two-dimensional table or
as a one-dimensional array of pixels, kept in row-major order (the elements of row 0, then the elements of row 1,
then the elements of row 2, etc.).

Class ImageServer provides methods for transforming the image, maintained as an ImageMap. Image-
Server knows nothing about the GUI; it simply calculates. It does keep the original and the transformed image.

Class ImagePanel provides part of the GUI. A subclass of JPanel, it can display an image through its
method paint. When an image is changed in any way, the corresponding JPanel object has to be notified so that
it can revise the size of the panel; that is the purpose of method formImage.

Class ImageGUI provides the GUI. It places buttons and ImagePanels in the window, and it “listens” to but-
ton clicks and acts accordingly, calling appropriate methods in ImageServer, then calling on an ImagePanel to
revise its view, and finally repainting the GUI.

2. Class Image and class ImageMap
An instance of class Image can contain a jpg image (or some other formats as well). Just how the image is

stored is not our concern; the class hides such details from us. Abstractly, the image consists of a rectangular array
of pixels (picture elements), where each pixel entry is an integer that describes the color of the pixel. We show a 3-
by-4 array below, with 3 rows and 4 columns, where each Eij is a pixel.
 E11 E12 E13 E14
 E21 E22 E23 E24
 E31 E32 E33 E34

An image with r rows and c columns could be placed in an int[][] array b[0..r-1][0..c-1]. How-
ever, class Image provides us with something different; it gives us the pixels in a one-dimensional array
map[0..r*c-1]. For the 3-by-4 image shown above, array map would contain the elements in row-major order:

E11, E12, E13, E21, E22, E23, E31, E32, E33

Class ImageMap provides an internal representation of an image, in array map, along with methods for dealing
with it. You can change the image by calling its methods getPixel(row,col), setPixel(row,col,v),

 2

and SwapPixels(a,b,i,j). So, for a variable im of class ImageMap, to set a pixel to v, instead of writing
something like im[h, k]= v; write image.setPixel(h, k, v);. You can also reference pixels in row-major
order in a one-dimensional array. For example, there are methods getPixel(p) and setPixel(p,v). That’s
all you need to know to manipulate images in this assignment.

Here’s more info on class ImageMap. The class has a field map, and the constructor has this in it:
map= new int[r*c]; // Create the array to contain the pixel-map
PixelGrabber pg= new PixelGrabber(im, 0, 0, c, r, map, 0, c);
pg.grabPixels();

This code stores in pg an instance of class PixelGrabber that has associated image im with our array map. The
third statement stores the pixels of the image in array map.

Once an ImageMap is created for an Image, methods ImageMap.setPixel, ImageMap.getPixels,
and ImageMap.SwapPixels can be used to manipulate the image.

3. Pixels and the RGB system
Your monitor uses the RGB (Red-Green-Blue) system for images. Each RGB component is given by a number

in the range 0..255 (8 bits). Black is represented by (0, 0, 0), red by (255, 0, 0), green by (0, 255, 0), blue by (0, 0,
255), and white by (255, 255, 255). The number of RGB colors is 224 =16,777,216.

A pixel is stored in a 32-bit (4 byte) word. The red, green, and blue components each take 8 bits. The remaining
8 bits are used for the “alpha channel”, which is used as a mask to make certain areas of the image transparent —in
those software applications that use it. We will not change the alpha channel of a pixel in this assignment.

The elements of a pixel are stored in a 32-bit word like this:

alpha red green blue

Suppose we have the green component (in binary) g = 01101111 and a blue component b = 00000111,
and suppose we want to put them next to each other in a single integer, so that it looks like this in binary:

0110111100000111

This number can be computed using g*28 + b, but this calculation is inefficient. Java has an instruction that shifts
bits to the left, filling the vacated spots with 0’s. We give three examples, using 16-bit binary numbers.

0000000001101111 << 1 is 0000000011011110
0000000001101111 << 2 is 0000000110111100
0000000001101111 << 8 is 0110111100000000

Secondly, operation | can be used to “or” individual bits together:
0110111100000000 | 0011 |
0000000010111110 1010

is 0110111110111110 is 1011

Therefore, we can put an alpha component alpha and red-green-blue components r, g, and b together into a
single 32-bit int value —a pixel— using this expression:

(alpha << 24) | (r << 16) | (g << 8) | b

Take a look at method ImageServer.invert. For each pixel, the method extracts the 4 components of the
pixel, inverts the red, green, and blue components (e.g. the inversion of red is 255 – red), reconstructs the pixel
using the above formula, and stores the new pixel back in the image.

4. Class ImagePanel
Read this section with class ImagePanel open in DrJava. A JPanel is a component that can be placed in a

JFrame. We want a JPanel that will contain one Image. So, we make ImagePanel extend JPanel.
Field image of ImagePanel contains (the name of) the image object. The constructor places a value in im-

age and also sets the size and “preferred size” of the ImagePanel to the dimensions of the image —this preferred
size is used by the system to determine the size of the JFrame when laying out the window.

Method paint is important. Whenever the system wants to redraw the panel (perhaps it was covered and is now
no longer covered), the system calls method paint, which calls drawImage of the graphics to draw the image.

8 bits 8 bits 8 bits 8 bits

 3

Finally, method formImage is called whenever our program determines that the image has been changed, e.g.
after inverting the image. The method gets the image from ImageMap map and resets the size and preferred size.

How does one learn to write all this code properly? When faced with doing something like this, most people will
start with other programs that do something similar and modify them to fit their needs (as we did).

5. Class ImageGUI
A JFrame is a window on your monitor. In this assignment, we want a window (which contains two versions of

an image). Therefore, class ImageGUI extends JFrame. Take a look at the following components of class Im-
ageGUI (there are others, which you need not look at now).
Fields originalPanel and currentPanel contain the panels for the original and manipulated images.
Constructors: There are two constructors. One is given an image. The other has no parameters; it gets the image
using a dialog with the user; the user can navigate on their hard drive and choose which image to work with. This is
similar to obtaining a file to read, which you learned about in a Lab.
Method setUp. Both constructors call this private method. The method puts the buttons into the JFrame —we’ll
learn about this later. It then adds a labeled text area, which you will use later. Then, provided there is an image, it
creates two panels with the image in them and adds them to the JFrame, using the call add (BorderLay-
out.CENTER, imagebox);. It creates an instance of class ImageServer, which will contain methods to ma-
nipulate the object. Finally, it fixes the window location, makes the JFrame visible, and “packs” and repaints it.
The call of method setDefaultCloseOperation near the end of setUp fixes the small buttons in the
JFrame so that clicking the “close” button causes the window to disappear and the program to terminate.

Read Chapter 17 of the text for more information on placing components in a JFrame. The most efficient and
enjoyable way to learn about GUIs is to listen to lectures on the ProgramLive CD.
Methods to manipulate the image. At the bottom of the class are methods to (1) restore, invert, and transpose the
image; (2) to filter an image, and (3) to hide and retrieve a message in the image. They are placed here to make it
easy to perform these functions in the interactions pane. They work by calling methods in class ImageServer.
You have to write several of these methods.
Methods to make the buttons available to the program. A set of methods are used to connect the clicking of a
button on the window to the program. You don’t have to look at these. We’ll give some idea on how they work later.

6. Class ImageServer
Class ImageServer provides all the methods for manipulating the image given to it in the constructor, as an

ImageMap. The constructor stores the map in field originalMap and stores a copy of it in currentMap.
As the image is manipulated, object currentMap changes. It can be restored to its original by copying field

originalMap into currentMap. That’s what procedure restore (near the end of the class) does.
Procedures invert, hreflect, and restore are complete. Procedure invert inverts the image (makes a

negative out of a positive, and vice versa). Look at its code to see how it processes each pixel —first retrieving it,
then changing its parts, and finally placing the changed pixel back into imageMap.

7. The methods you will write.
Implement the methods in class ImageServer as explained below.

7A. Implement method vreflect. This method should reflect the image around its vertical middle. Look at method
hreflect to get an idea about how to do it.

In order to get this method to work from the GUI, you have to change the GUI, as follows. Look at function
ImageGUI.setup. (1) After the addition of button buttonhreflect to buttonBox, insert a statement to
add button buttonvreflect to buttonBox (the button is already declared). (2) Take a look at the code that
makes this (i.e. this object) a listener to the various buttons. Insert a statement to add this as a listener to but-
tonvreflect.

7B. Implement method transpose. Below is an array. To its right is its transpose: each row k of the original
array becomes column k in its transpose.

array transpose
01 02 03 04 01 06 11
06 07 08 09 02 07 12
11 12 13 14 03 08 13
 04 09 14

 4

The transpose algorithm is fairly easy to write in terms of two-dimensional arrays. However, the algorithms will
be a bit more complicated when the arrays involved are arrays of pixels making up an image. We suggest that, be-
fore writing the code to manipulate the images, you write a static function to produce the transpose of a two-
dimensional integer array b[0..r-1, 0..c-1], as well as a procedure to print (in the interaction pane) a rec-
tangular array in order to help you debug your work. This practice makes code writing easier. You will then simply
translate your code into the ImageMap framework.

The comments in the body of transpose should help you write the body. In addition, use procedure Image-
Server.hreflect as a model for accessing the elements of an ImageMap.

7C. Implement method filter. In this method, you change each pixel of the image to consist only of grey, red,
green, or blue, depending on the value of parameter color. Produce a “grey-scale image” by making all three com-
ponents —red, green, blue— equal to the average of the original red, green, and blue values. Filtering it through red
(and similarly through green and blue) is done by making the green and blue components 0.

This manipulation requires that you extract the alpha, red, green, and blue components from each pixel, construct
the new pixel value, and store it. Look at procedure invert to see how this is done.

7D. Steganography” According to Wikipedia (en.wikipedia.org/wiki/Steganography), steganography “is the art
and science of writing hidden messages in such a way that no one apart from the intended recipient even realizes
there is a hidden message.” In contrast, in cryptography, the existence of the message is not disguised but the con-
tent is obscured. Quite often, steganography deals with messages hidden in pictures.

To hide a message, each character of the message can be hidden in one or two pixels of an image, by modifying
the red, green, and blue values for the pixel(s) so slightly that the change is not noticeable.

Each character is represented using the American Standard Code for Information Interchange (ASCII) as a three-
digit integer. We allow only characters that can be represented in ASCII —all the obvious characters you can type
on your keyboard are ASCII characters. See page 6.5 of the ProgramLive CD for a discussion of ASCII.

For the normal letters, digits, and other keyboard characters like $ and @, you can get its ASCII representation
simply by casting it to int. For example, (int)'B' evaluates to the integer 66, while (int)'k' evaluates to 107.

We can hide character 'k' in a pixel whose RGB values are 199, 222, and 142 by replacing the least significant
digit of each color component by a digit of the integer representation 107 of 'k':

 Original pixel Pixel with 'k' hidden
 Red Green Blue hide 'k', which is 107 Red Green Blue
 199 222 142 191 220 147

This change in each pixel is so slight that it will not —cannot— be noticed just by looking at the image.

Decoding the message, the reverse process, requires extracting the last digit of each color value of a pixel and
forming the ASCII value of a character from the three extracted values. In the above diagram to the right, extract 1,
0, and 7 to form 107, and cast this integer to char.

Extracting the message does not change the image. The message stays in the image forever.
Three problems for you to solve. You will write code to store a message m in the pixels of the image in row-major
order, starting with pixel 0, 1, 2, … Think about the following issues and solve them.
(1) You need some way to recognize that the image actually contains a message. Thus, you need to place something
in pixels 0, 1, 2, … that has very little chance of appearing in a real image. You can’t ever be sure that an image
without a message doesn’t start with those pixels, but the chances should be small.
(2) You have to know where the message ends. You can do this in several ways —place the length of the message in
the first pixels in some way (how many pixels can that take?), put some unused character at the beginning and end
of the message, or use some other scheme.
(3) The largest value of a color component (e.g. blue) is 255. Suppose the blue component is 252 and you try to hide
107 in this pixel; the blue component should be changed to 257, but this impossible because a color components are
≤ 255. There are several ways to solve this problem, including using two pixels for each character of the message.
Each solution has its advantages and disadvantages. We ask you to think about this problem, come up with at least
two ways to solve the problem, and implement one of them.

As you can see, this part of the assignment is less defined than the previous ones. You get to solve some little
problems yourself. Part of this assignment will be to document and discuss your solutions.

 5

Your task on part 7D
(a) Decide on how you will solve the problems mentioned in points 1, 2, and 3 given above. As you design and im-
plement this assignment, write a short essay that documents at least two solutions to each of the three problems men-
tioned above, discusses their advantages and disadvantages, and indicates what your solutions are. Advantages could
be: easiest to implement, least amount of pixels used in hiding an image, least time spent in hiding a message —
whatever. When you are finished with this assignment, insert this essay as a comment at the beginning of class Im-
ageServer.

Feel free to discuss points 1, 2, and 3 with TAs or consultants. They will not tell you how to solve these prob-
lems. But they will discuss your ideas with you.

(b) Look at the declaration of fields in class ImageGUI. You will see two buttons: buttonhide and button-
reveal. Scroll down to method setup and look at the method calls under “Build box buttonBox of buttons”. Insert
method calls to add buttons buttonhide and buttonreveal to buttonBox. Then, in the next set of instruc-
tions, register “this” class as an “action listener” for these two buttons.

Now, when you create a new ImageGUI object, you should see the hide and reveal buttons. The message that is
hidden is the string of text that appears in the text area just below the images in the GUI. Take a look at procedure
actionPerformed and see what it does when one these two buttons are clicked.

(c) Complete the body of procedures hide and reveal in class ImageServer. These two methods will hide a
message and reveal the message in the jpg image. When you design method reveal, make sure it attempts to ex-
tract the message only if its presence can be detected.

Debugging hide and reveal can be difficult. We give you some hints on this at the end of this document.

8. What to submit
Start early, because you are sure to have questions! Waiting until the deadline will cause you frustration and lack

of understanding, instead of the fun that should be felt in completing this assignment. Complete the bodies of proce-
dures vreflect, transpose, filter, hide, and reveal in class ImageServer and change class Im-
ageGUI as discussed in tasks 7A and 7C. Don’t change anything else —don’t declare new fields in the class and
don’t change any of the other classes.

Insert your essay (see the beginning of part 7D) into file ImageGUI and submit both files ImageGUI and Im-
ageServer on the CMS by the due date.

Writing, testing and debugging hide and reveal

Methods hide and reveal can be difficult to debug. Here some hints to help you.

1. We encourage writing other methods besides hide and reveal. You get to decide which ones to write as you
design and implement this assignment. Be sure to specify each method appropriately in a comment before it.

2. It will be difficult to use a JUnit testing class here, because it will be difficult to get it to access a picture appro-
priately. You do not have to use one.

3. Use function ImageMap.toString(pixel) to get a readable String representation of a pixel.

4. Do not assume that you can debug simply by calling hide and then reveal to see whether the message
comes out correctly. The best thing to do is to write method hide and debug it before going on to reveal.

5. In the methods that you write, insert System.out.println(…); statements to print out information, so
that you can see what your code you is doing. This is the easiest way to determine whether your code is working
correctly. But you will have to continually change these statements in order to keep the amount of output to
something manageable.

6. Start with extremely short messages to hide —1, 2, or 3 characters— and first check that the initial pixels,
which are supposed to indicate that a message is hidden, are correct.

