
CS100J About Prelim III (Tuesday, 7:30--9:00PM, 18 April, Uris Auditorium)
Review session: Sunday, 16 April, 1:00--3:00. Philips 101

You should know everything that you needed to know for the first two tests --we review this below. Also:

. We will give you a precondition, postcondition, and a loop invariant, and you will have to
develop the loop, with initialization, from it. The grade will depend on how well you deal with the four loopy questions

. Please remember that the only variables that should be used (outside of variables declared in the
repetend) are variables that are mentioned in the loop invariant.

While loops and for loops

and the given invariant

. Everything on Sects 8.1 and 8.2 of the class text --these pages discuss the technical details for using arrays in Java
and for reasoning about array. Two dimensional arrays: You should know how to declare and use rectangular arrays and
ragged arrays; and requires knowing how arrays are stored. Sects. 9.1, 9.2, 9.3.1, 9.4.

Arrays

. You should know the following algorithms. For example, if we ask "what is algorithm partition", you should
be able to write the function: give the precondition and postcondition, write down the invariant, and then develop the loop
with initialization. All these algorithms are discussed in the text or on the ProgramLive CD:

Algorithms

Algorithm Linear search (Sec. 8.5.1) Algorithm Binary search (Sec. 8.5.3)
Algorithm Find minimum (Sec. 8.5.1) Algorithm Partition (PLive activity 8-5.5)
Algorithm Selection sort (Sec. 8.5.4) Algorithm Insertion sort (Sec. 8.5.5)

On selection sort and insertion sort, we will NOT want to see the inner loops. The repetends of these algorithms should be
written at a high level, stating WHAT is done and not how it is done, as discussed in the text and in lecture. Since you
know that at least one of these will be on the test, please developing all of them. Answering a question on one of
these should take 5 minutes, because you KNOW how to develop them.

practise

. We use these all the time. You are expected to know the basic methods of these classes: For
String, charAt(i), substring(i), substring(i,j), length(). For Vector: add(ob), set(i, ob), get(i), size(). If a question calls for
other methods of the classes, we will define them for you. You should know that Vector<Cat>(...) creates a Vector
whose elements are of class <Cat>.

Classes String and Vector

new

. You will have to write parts of classes/subclasses as on prelims II and II. Two
ways to study: (1) Make sure you know the definitions below, and (2) Practice writing classes and subclass definitions.
Apparent and real types of a variable are important in understanding what components can and cannot be referenced. Take
a look at other texts on Java and see what exercises they have for writing classes. Also, know that the definitions of the
fields, together called the "class invariant", has to be kept true by all methods. Finally, when writing classes, write them in
DrJava so you can test your syntax.

With regard to classes and subclasses

. We use three containers for components: JFrame (BorderLayout manager), JPanel (FlowLayout), and Box
(BoxLayout). You should know the default layout manager of each and how to place elements in the container. You don't
have to know the names of the components we might want to place (like JButton or JLabel). But you should be able to
write a sequence of code to put a component into each of the three containers mentioned above. You do not have to know
how to listen to a GUI event.

GUIS

. Below is a collection of meanings of various terms. You are expected to know these backward and forward.
On the test, wishywashy definitions will not get much credit. They must be the same as, or similar to, the ones below --
and they must be correct. Learn these not by reading but by practicing writing them down, or have a friend ask you these
and repeat them out loud. You should be able to write programs that use the concepts defined below, and you should be
able to draw folders and execute method calls, drawing the frames for the calls.

Definitions

: A named box that can contain a value of some type or class. For a type like int, the value is an integer. For a
class, it is the name of (or reference to) an instance of the class —the name that appears on the folder.
Variable

: a definition of the name of the variable and the type or class of value it can contain. Syntax:
;

Declaration of a variable
type variable-name

: parameter, local variable, instance variable(or field), static variable (or class variables).Four kinds of variables

: A variable that is declared within the parentheses of a method header. The variable is drawn in a frame for a
call on the method.
Parameter

: A variable that is declared in the body of the method. The variable is drawn in a frame for a call on the
method.
Local variable

: A variable that is declared in a class without modifier static. An instance variable is placed in every
folder of the class.
Instance variable

: A variable that is declared in a class with modifier static. An static variable is placed in the file drawer for
the class in which it is declared.
Static variable

: procedure, function, constructor:Three kinds of methods

 has keyword void before the procedure name. The procedure call is a statement.A procedure definition

 has the result type in place of void. The function call is an expression, whose value is the value
returned by the function.
A function definition

: An expression that occurs within the parentheses of a method call (arguments are spearated by commas).Argument

 has neither keyword void nor a type, and its name is the same as the name of the class in which
it appears. The constructor call is a statement, whose purpose is to initialize (some of) the fields of a newly created folder.
A constructor definition

. An entity that is drawn like a manila folder. It has a name or label
on its tab. Its contents are the instance methods and instance fields defined in the class definition.
Folder (manila folder, object, or instance) of a class

. An expression of the form class-name (arguments)". It is evaluated as follows: (1) create a new
folder of class class-name and put it in class-name's file drawer. (2) Execute the constructor call "class-name (arguments)";
where the method called is one that appears in the newly created folder. (3) Yield as the result of the new-expression the
name of the folder created in step (1).

New-expression "new

. The frame for a method call contains: (1) the name of the method and the program counter, in
a box in the upper left, (2) the scope box (see below), (3) the local variables of the method, (4) the parameters of the
method.

Frame for a method call

 for a call contains: For a static method, the name of the class. For an instance method, the name of the
folder in which the instance appears.
The scope box

:To execute a method call

1. Draw a frame for the call. Fill in its name and program counter in the upper left box. Fill in its scope box
on the upper right with either the name of the class in which the method is defined (static method) or the
name of the folder in which the method appears (nonstatic method). Draw local variables and parameters.
2. Assign the values of the argument to the parameters.
3. Execute the method body. When a name is used, look for it in the frame for the call. If it is not there, look
in the place given by the scope box.
4. Erase the frame for the call.

. We assume you can draw a folder, or instance of a class. For subclasses, remember that the folder has more than
one partition. Look at the homework we had on drawing folders.
Folder

. Every class that does not explicitly extend another subclass automatically extends class Object. Class Object
has at least two instance methods: toString and equals.
Class Object

. In one constructor, the first statement can be a call on another constructor in the
same class (use keyword instead of the class-name or a call on a constructor of the superclass (use keyword
instead of the class-name).

Calling one constructor from another
this super

. In a subclass, one can redefine a method that was defined in a superclass. This is called overriding
the method. In general, the overriding method is called. To call the overriden method m (say) of the superclass, use the
notation .m(...).

Overriding a method

super

. A variable x defined using, say, C x; has apparent class C. The apparent class is used in
determine whether a reference to a field or method is syntacally legal or not. One can write x.m(...), for example, if and
only if method m is declared or is referenceable in class C. The real class of x is the class of an object that is in x. It could
be a subclass. If x.m(...) is legal, then it calls the method that is accessible in the real class, not the apparent class.

Real and apparent class

. Just as one can cast an i to another type, using, say, () i or () i, one can cast a
variable of some class-type variable to a superclass or subclass. And, you should know how to use operator .
See Sect. 4.2 and 4.3 of the text.

Casting and instanceof int byte double
instanceof

. Know the reasons for using them and how to make a class or method abstract. See
Sec. 4.7 of the text.
Abstract class and abstract method

