Review sessions, all in Philips 101:

| Day | Time | Instructor | Topic |
| :--- | :--- | :--- | :--- | :--- |
| Monday | 1PM | Williams | Executing sequences of statements that involve creating
 objects |
| Monday | 2PM | Williams | Abstract class and methods; static variables |
| Monday | 3PM | Owen | Writing constructors in classes and subclasses |
| Tuesday | 1PM | Gries | Developing loops from invariants |
| Tuesday | 2PM | Piti | Developing the required algorithms |
| Tuesday | 3PM | Elhawary | Matlab |
| Wednesday | 1PM | Haque | Recursion |
| Wednesday | 2PM | Breck | Casting; apparent and real types; etc. |
| Wednesday | 3PM | Breck | Executing method calls; drawing a frame for a call |

You have to know everything that was covered in the three prelims. See the handouts on the three prelims (on the course web page).

You do not have to study these topics; if they come up on the final, we will tell you about them: Exception handling, reading a file or the keyboard, applications, applets

But you have to know

1. Multi-dimensional arrays. See below.
2. Placement of components in a GUI. The default layout managers for a JFrame, a JPanel, and a Box and how that default manager arranges components in it. What these basic components are: JButton, JLabel, JTextField, JTextArea. You do not have to know how to "listen" to an event.
3. Matlab. See below.
4. Several algorithms. You know this already, but we repeat it for emphasis. any one of the following algorithms can be asked for. We may simply say "show the binary search algorithm", or "Show us the logarithmic exponentiation algorithm", and you have to give the precondition, postcondition, loop invariant, and the algorithm. It is expected that the loop with initialization is developed from the invariant; a loop that has nothing to do with the invariant you write gets little credit. Everyone should get full credit on this question because it is simply a matter of sitting down and practicing developing known algorithms from their specifications.

- Linear search, Binary search, Dutch National Flag, Partition algorithm, Selection sort, Insertion sort

Multi-dimensional arrays

You have to know about rectangular arrays and ragged arrays --in which rows may have different lengths. This includes knowing how to access the number of columns in a given row and knowing how to create a rectangular array and a ragged array.

MATLAB

0 . The notation $a: b$ to denote the row of integers $[a(a+1)(a+2) \ldots b]$. The notation $a: i n c r e m e n t: b$

1. The basics of creating arrays, using
(a) row vector notation: [102030]
(b) column vector notation $[10 ; 20 ; 30]$
(c) rectangular array notation [10 20 30;40 50 60]
(d) stacking rows: if x is $\left[\begin{array}{lll}10 & 20\end{array}\right]$, then $[\mathrm{x} \mathrm{x}]$ is $\left[\begin{array}{llll}10 & 20 & 10 & 20\end{array}\right]$
(e) stacking columns. if $u=\left[\begin{array}{ll}12\end{array}\right] ; v=[34]$ then $[u ; v ; u]$ is

12
34
12
(f) for a row vector, $\operatorname{size}(x)$ is the number of elements. For an array, $\operatorname{size}(x)$ is the number of elements in each dimension. For this purpose, a column vector is really a 1-by-n array.
(g) transpose b^{\prime} of an array or vector b
(h) functions $z \operatorname{zeros}(\mathrm{n}), \operatorname{zeros}(\mathrm{n}, \mathrm{m})$, ones(n) and ones(n,m)
(i) elementwise addition, subtraction, multiplication, division of an array by a scalar or a scalar by an array, e.g. [10 52$]+5$.
(j) Elementwise operations on arrays:
addition $\mathrm{b}+\mathrm{c}$ subtraction $\mathrm{b}-\mathrm{c} \quad$ multiplication $\mathrm{b} . * \mathrm{c}$ division $\mathrm{b} . / \mathrm{c} \quad$ exponentiation $\mathrm{b} . \wedge \mathrm{c}$
(k) functions max, min, sum, cumsum, prod, cumprod, median, abs, floor, ceil, sqrt
(l) Defining functions, e.g.

```
% = the mean and standard deviation of nonempty row vector x
function [mean,stdev] = stat(x)
n = length(x);
mean = sum(x)/n;
stdev = sqrt(sum((x-mean).^2)/n);
```

(m) if-statements, e.g.

$\mathrm{d}=\operatorname{sqrt}\left(\mathrm{b}^{\wedge} 2-4 * \mathrm{a}^{*} \mathrm{c}\right)$;	if ($\mathrm{x}>\mathrm{y}$) \& ($\mathrm{x}>\mathrm{z}$)
if $d>0$	maxval $=x$;
$\mathrm{r} 1=(-\mathrm{b}+\mathrm{d}) /(2 * a) ;$	elseif $y>z$
$\mathrm{r} 2=(-\mathrm{b}-\mathrm{d}) /(2 * \mathrm{a})$;	maxval $=$ y;
else	else
disp('Complex roots')	$\operatorname{maxval}=\mathrm{z}$
end	end

(n) Be able to put together expressions that calculate a sum or cumulative sum of n terms of a series. For example, we wrote this function for the cumulative sum of n terms of Wallis's formula

```
pi / 2 = 2*2/(1*3)+4*4/(3*5)+6*6/(5*7) + ..
    function answer= wallis(n)
    evens=2 * (1:n)
    odds= evens - 1
    answer= 2*cumsum((evens .^2) ./ (odds .* (odds + 2))
```

Here are some infinite sums to practice on.
$5+5+5+5+\ldots$
$1 / 1+1 / 2+1 / 3+1 / 4+\ldots$
$1 / 1-1 / 2+1 / 3-1 / 4+1 / 5-1 / 6+\ldots$
$1-1+1-1+1-1+\ldots \quad 1 /(1 * 2 * 3)+1 /(3 * 4 * 5)+1 /(4 * 5 * 6)+\ldots$
$1 /(1 * 1)+1 /(2 * 2)+1 /(3 * 3)+1 /(4 * 4)+\ldots$
$1 * 2 /(2 * 3)+2 * 3 /(3 * 4)+3 * 4 /(4 * 5)+\ldots$

