
CS100J Final: Thursday, 11 May, 2:00PM to 4:30PM, Barton West

Review sessions, all in Philips 101:

Day Time Instructor Topic

Monday 1PM Williams Executing sequences of statements that involve creating
objects

Monday 2PM Williams Abstract class and methods; static variables

Monday 3PM Owen Writing constructors in classes and subclasses

Tuesday 1PM Gries Developing loops from invariants

Tuesday 2PM Piti Developing the required algorithms

Tuesday 3PM Elhawary Matlab

Wednesday 1PM Haque Recursion

Wednesday 2PM Breck Casting; apparent and real types; etc.

Wednesday 3PM Breck Executing method calls; drawing a frame for a call

You have to know everything that was covered in the three prelims. See the handouts on the three prelims (on the course web
page).

: Exception handling,
reading a file or the keyboard, applications, applets
You do not have to study these topics; if they come up on the final, we will tell you about them

But you have to know

. See below.1. Multi-dimensional arrays

The default layout managers for a JFrame, a JPanel, and a Box and how that default
manager arranges components in it. What these basic components are: JButton, JLabel, JTextField, JTextArea. You do not have
to know how to "listen" to an event.

2. Placement of components in a GUI.

. See below.3. Matlab

You know this already, but we repeat it for emphasis. any one of the following algorithms can be asked
for. We may simply say "show the binary search algorithm", or "Show us the logarithmic exponentiation algorithm", and you
have to give the precondition, postcondition, loop invariant, and the algorithm. It is expected that the loop with initialization is
developed from the invariant; a loop that has nothing to do with the invariant you write gets little credit. Everyone should get
full credit on this question because it is simply a matter of sitting down and practicing developing known algorithms from their
specifications.

4. Several algorithms.

Linear search, Binary search, Dutch National Flag, Partition algorithm, Selection sort, Insertion sort

Multi-dimensional arrays

You have to know about rectangular arrays and ragged arrays --in which rows may have different lengths. This includes
knowing how to access the number of columns in a given row and knowing how to create a rectangular array and a ragged
array.

MATLAB

0. The notation a:b to denote the row of integers [a (a+1) (a+2) ... b]. The notation a:increment:b

1. The basics of creating arrays, using

(a) row vector notation: [10 20 30]
(b) column vector notation [10; 20; 30]
(c) rectangular array notation [10 20 30;40 50 60]
(d) stacking rows: if x is [10 20], then [x x] is [10 20 10 20]
(e) stacking columns. if u = [1 2]; v = [3 4] then [u;v;u] is

1 2
3 4
1 2

(f) for a row vector, size(x) is the number of elements. For an array, size(x) is the number of elements in each dimension. For
this purpose, a column vector is really a 1-by-n array.

(g) transpose b' of an array or vector b

(h) functions zeros(n), zeros(n,m), ones(n) and ones(n,m)

(i) elementwise addition, subtraction, multiplication, division of an array by a scalar or a scalar by an array, e.g. [10 5 2] + 5.

(j) Elementwise operations on arrays:
addition b + c subtraction b – c multiplication b .* c division b ./ c exponentiation b .^ c

(k) functions max, min, sum, cumsum, prod, cumprod, median, abs, floor, ceil, sqrt

(l) Defining functions, e.g.

% = the mean and standard deviation of nonempty row vector x
function [mean,stdev] = stat(x)
n = length(x);
mean = sum(x)/n;
stdev = sqrt(sum((x-mean).^2)/n);

(m) if-statements, e.g.

d= sqrt(b^2 -4*a*c);
if d>0
 r1 = (-b+d)/(2*a);
 r2 = (-b-d)/(2*a);
else
 disp(`Complex roots')
end

if (x>y) & (x>z)
 maxval = x;
elseif y>z
 maxval = y;
else
 maxval = z;
end

(n) Be able to put together expressions that calculate a sum or cumulative sum of n terms of a series. For example, we wrote this
function for the cumulative sum of n terms of Wallis's formula

 pi / 2 = 2*2/(1*3) + 4*4/(3*5) + 6*6/(5*7) + ...

function answer= wallis(n)
evens= 2 * (1:n)
odds= evens – 1
answer= 2*cumsum((evens .^2) ./ (odds .* (odds + 2))

Here are some infinite sums to practice on.
5 + 5 + 5 + 5 + ... 1 - 1 + 1 - 1 + 1 - 1 + ... 1/(1*2*3) + 1/(3*4*5) + 1/(4*5*6) + ...
1/1 + 1/2 + 1/3 + 1/4 + ... 1/(1*1) + 1/(2*2) + 1/(3*3) + 1/(4*4) + ...
1/1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... 1*2/(2*3) + 2*3/(3*4) + 3*4/(4*5) + ...

