
Assignment A4 CS100J Spring 2006 Due Tuesday, 14 March, 23:59

This assignment introduces you to graphics. You will write procedures that draw a star, spirals, an expanding ball, and a "Koch
snowflake" in a JFrame. You may work with one other person. If you do so, please form a group for this assignment on the
CMS WELL BEFORE YOU SUBMIT YOUR FILES. You will not use a JUnit testing program because you will be looking at
visual output (graphics) to determine correctnesss. You must use javadoc comments —before submitting the assignment, click
the javadoc button and look carefully at the specs produced. At the end of this document, we tell you what to submit.

Download class (from here or from the course website), put it in its own directory, and open it in DrJava. A is a
pen of a certain color at a pixel that is pointing in some direction, given by an angle (0 degrees is to the right, or east;
90 degrees, north; 180 degrees, west; and 270 degrees, south). When the turtle is moved to another spot using procedure , a
line is drawn if the pen is currently "down" --nothing is drawn if the pen is "up". The pen is initially black, but its color, of
class , can be changed. A footnote on page 1.5 of the ProgramLive CD contains information about class .

Turtle Turtle

(x, y)

move

java.awt.Color Color

At this point, look at the specification of class (the javadoc files) and see what methods are available. Here are some
important points:

Turtle

Class uses the object that is attached to a . It builds on class by maintaining the
"turtle", which has a position and an angle. You can have many turtles open at the same time;
they all use the same . This is because fields , , and are .

Turtle Graphics JPanel Graphics

JPanel jframe panel graphics static
The coordinates and angle of the turtle are maintained using type This is needed for maximum accuracy. If we
used , errors might crop up after many calculations. But whenever a point is to be placed in the window, its x- and y-
coordinates are rounded to the nearest integer because that is what the graphics space needs.

double.
int

Function allows you to use an integer to obtain an object of class Color, for various oft-used colors.tColor

Things are actually drawn on a "panel" on the . Dragging to make the window smaller or bigger does not
change the size of this panel, which is (,), where and are two fields of class Turtle. Procedure

 can be used to make the panel as large as possible within the current window.

JFrame JFrame

width height width height

setPanelSize

Procedure can be used to move the turtle, without drawing, to and face it at angle . moveTo(x, y, a) (x, y) a

Procedure can be used to pause execution for milliseconds. Judicious use of this method will allow you to
watch something being drawn in slow motion.

pause(p) p

In DrJava, create another file with the following class in it (copy and paste; then use the indent-line feature of DrJava to indent
the lines appropriately) and save it in the same directory with file .Turtle.java

import java.awt.*;
/** Assignment A4: using a Turtle */
public class MyTurtle extends Turtle {
/** Draw a black line 30 pixels to the right (east) and then
a red line 35 pixels down (south). */
public void drawTwo() {
move(30); // draw a line 30 pixels to the right (east)
addAngle(270); // add 270 degrees to the angle
setColor(Color.red);
move(35);
}
}

We give you one method in this class as an example of how graphics works. After compiling class , in DrJava's
interaction pane, create an instance of class and then execute a call on this method and see what happens. A
should be created and two lines should be drawn on it.

MyTurtle

MyTurtle JFrame

In the interactions pane (or in a method in class), draw some lines, rectangles, circles, etc, to familiarize yourself with
class . After that, perform the tasks given below. Put a precise and complete specification on any method you write as a
javadoc comment —many points will be deducted if you don't. The specification should allow anyone to know precisely what a
call on the method does. It must mention all parameters and say what they are for. Look at your javadoc specs to make sure they
are appropriate. As usual, your methods must have our names, exactly, and have the same parameters.

MyTurtle

Turtle

. Write a procedure that draws a 7-pointed star whose lines have length with the
current turtle. An example appears to the right. Don't worry about what angle the turtle is facing when you
start drawing the star; just begin by drawing a line of length . The angle between the two lines that make a
point is 180/7 degrees. However, because of the way the drawing is done, to get that angle in a point, after
drawing a line, you have to add 180 – 180/7 degrees to the angle. For accuracy, the calculations MUST be
done in type .

Task 1 drawStar7(int d) d

d

double

. The first picture to the right is done by drawing 10 lines, as follows. The first one has
length 5; the second, 10; the third, 15, etc. After each line, 90 degrees is added to the angle. The lines alternate
among three colors: green, blue, red.

Task 2: Draw a spiral

Write a procedure ; that draws lines, adding angle after each
one. Line 1 is pixels long, line 2 is pixels long, ..., line is pixels long. The lines alternate among
green, blue, and red. Pause microseconds after drawing each line.

spiral(int n, int a, int d, int msec) n a

d 2*d i i*d

msec

Then write a procedure that does the same thing as , but first it:spiralm(int n, int a, int d, int sec) spiral

1. Sets the size of the graphics panel as large as possible (use procedure in class).setPanelSize Turtle

2. Places the turtle in the middle of the window facing east.

When you first test your method, use 5 for and 0 for . Try different angles, like 90 degrees, 92 degrees, 88 degrees, etc.
You can also use = 500 or =1000 in order to see the lines drawn one at a time.

d sec

msec msec

You will be amazed at what method does. Find out by trying these calls (clear the panel, using procedure ,
before each one —assume is an instance of):

spiral clear()

x MyTurtle

x.spiralm(500, 90, 1, 0); x.spiralm(500, 135, 1, 0); x.spiralm(500, 60, 1, 0);

x.spiralm(500, 121, 1, 0); x.spiralm(500, 89, 1, 0); x.spiralm(500, 150, 1, 0);

x.spiralm(500, 120, 1, 0); x.spiralm(500, 119, 1, 0);

. Procedure in lets you draw a disk —i.e. a filled-in circle. You
can use this method to draw what looks like a ball that expands and contracts at a rate given by a variable . Basically,
it will work as follows. You will write an infinite loop that at each iteration will do the following:

Task 3: An expanding-contracting ball fillCircle Turtle

velocity

1. Pause for 100 microseconds.
2. If adding to the radius will make the ball go into a side of the panel (touching the side is ok), then
negate .
3. If adding to the radius will make the radius < 0, then negate .
4. Add to the radius and redraw the ball. To redraw the ball, if the velocity is negative, then the original
ball must be erased (by drawing it white) before changing the radius and redrawing the ball.

velocity

velocity

velocity velocity

velocity

That is how the expanding/contracting will work. Now, here is how to proceed to do this part.

(a) Start a new .java file for class , which extends . This class needs two (private) fields: gives the radius
of the ball and the acceleration. You do not need getter methods for these fields.

Ball MyTurtle radius

velocity

(b) Write a constructor that initializes a new folder so that the turtle starts in the middle of the window,
facing east, and a ball of radius is drawn in the center of the window. Later, when it is expanded, it will expand with velocity
. Make sure this constructor works properly —by seeing that it constructs a ball properly in the window.

Ball(r, v) Ball

r

v

(c) Write a constructor . It should move the turtle to point , facing
east, change the pen color to , draw a ball with center and radius , and save in field .

Ball (int r, int x, int y, int v, Color c) (x, y)

c (x, y) r v velocity

(d) Write a procedure that adds to the radius of the ball and redraws the ball. This method will assume
(i.e. have as a precondition) that this step won't make a ball go over a side of the panel (because the ball gets too big) and it
won't make the radius get < 0. Note that if is negative, the procedure must do the following.

expandOnce() velocity

velocity

(1) Erase the ball, by drawing it with a white pen; (2) add velocity to the radius; (3) draw the ball in its original
color. So, you have to remember the original color. Have a local variable to contain the original color and,
after drawing the ball white, set the turtle color back to the value of variable .

save

save

Test this method carefully: Call it with both a negative and a positive velocity and make sure that the desired effect happens in
the .JFrame

(e) Write a procedure that negates (using) if either of the following
conditions holds. (1) is negative, and adding it to the radius makes the radius be < 0. (2) is positive, and
adding it to the radius makes the ball go over a side (touching a side is OK).

checkBall() velocity velocity= - velocity;

velocity velocity

(e) Write a method that perpetually expands and contracts the ball. Its body should be a loop that does not
terminate and that has a repetend that (1) pauses for 100 microseconds, (2) reverses the expansion or contraction if necessary, as
indicated in step (d), and (3) calls . Test this procedure: In the
interactions pane, create a new , call , and watch the ball expand and contract. The best way to
stop this execution is to hit the DrJava reset button.

expandContract()

expandOnce

Ball d d.expandContract();

. Directly to the right is
a triangle. It is called a "Koch snowflake " of level
0. If we replace each line of this Koch snowflake
by four lines as drawn in the second diagram, we
get the Koch snowflake of depth 1, which is the
third figure. And, if we replace each of the lines of this Koch snowflake
by the same four lines, we get the Koch snowflake of depth 2 shown on
the extreme right. We can continue this to any depth.

Task 4. Koch snowflakes

Doing this is extremely easy using recursion! That's what you will do here. First, copy the two
specs given below into your class . MyTurtle

/** Make sure that the graphics panel is as large as possible in the window. Clear the window, place the turtle facing east at
position (width/5, 2*height/3). Then draw a Koch snowflake of depth d with line segment length F. Pause s milliseconds after
drawing each
line segment. Precondition: d ≥ 0*/
public void Koch(int d, double F, int s) {}

/** Draw a KochL snowflake of depth d with the current turtle. Parameters d, F, and s are as in procedure Koch.
 Precondition: d ≥ 0 */
public void KochL(int d, double F, int s) {}

Procedure is the easiest. First, call in order make the graphics panel as large as possible within the
window. Then, call procedure to move the turtle as in the specification (and make the turtle face east). Finally, draw as
shown below.

Koch setPanelSize()

moveTo

The commands to be placed in and is described by the following two :Koch KochL patterns

: Koch L – – L – – L

: KochL L + L - - L + L

Here's how to interpret each of them. Each symbol is a command to do something, as follows.

: If (depth of recursion) is 0, draw a line of length ; otherwise, call .
: add 60 degrees to the turtle's angle.
: subtract 60 degree from the turtle's angle.

L d F KochL(d-1, F, s)

+

–

So, the patterns are simply a simple, terse, way of describing what each of the method bodies should do. Such a system of
patterns is called a "Lindenmayer System", after Aristid Lindenmayer, who co-authored a book titled

 (Springer Verlag, 1990).
The Algorithmic Beauty of

Plants

Your task, then, is to complete the bodies of and according to the patterns given above for them —and test and
debug until they are correct. The following hint may help make things easier. In each procedure, first test whether is ; if it is,
then carry out all the commands under that assumption and return. Then, carry out all the commands under the assumption
that .

Koch KochL

d 0

d > 0

. Do
this only if you want to! It is another
example of writing recursive procedures
using patterns. Doing it won't add to your
grade, but we will make note of the fact that you did it. To
the right are three "hexagonal Gosper curves" drawn using
recursive procedures. The depth of recursion used to get the
three was 0, 1, and 2. The first 2 were drawn using a line-
segment length of 20; the third, line segment length 8.
Three procedures are used to produce these curves as well
as others with higher depths of recursion. Here are
guidelines:

Extra Task! Hexagonal Gosper curves

First, put into class three procedures with the following headers. You should be
able to copy and paste —then, use the DrJava indent-line feature to make the definitions look readable.

MyTurtle

/** Draw a Gosper design beginning at the position (4*width/5, height-50) of the window. d is the depth of recursion, F is the
length of one line segment, and s is the microseconds to pause after each line segments id drawn. Precondition: d ≥ 0*/
public void Gosper(int d, int F, int s) {}

/** Draw a Left Gosper design. d, F, s are as in proc Gosper. Precondition: d ≥ 0*/
public void GosperL(int d , int F, int s) {}

/** Draw a Right Gosper design; d, F, s are as in proc Gosper. Precondition: d ≥ 0*/
public void GosperR(int d , int F, int s) {}

Procedure is the easiest. First, call in order make the graphics panel as large as possible within the
window. Then, call procedure to move the turtle as in the specification (and make the turtle face east).
Finally, call with the same arguments as the parameters of .

Gosper setPanelSize()

moveTo

GosperL Gosper

 and are procedures; they call each other. We can describe what they do by giving a pattern
for each; here they are:
GosperL GosperR mutually recursive

: GosperL L + RR ++ R – L –– LL – R

: GosperR – L + RR ++ R + L ––L – R

Each symbol is a command to do something, as follows.

: If (depth of recursion) is 0, draw a line of length ; otherwise, call .
: If (depth of recursion) is 0, draw a line of length ; otherwise, call .
: add 60 degrees to the turtle's angle.
: subtract 60 degree from the turtle's angle.

L d F GosperL(d-1, F, s)

R d F GosperR(d-1, F, s)

+

–

Note that and call each other. We call them a set of two procedures. Now write their
procedure bodies to follow the patterns given above. Test and debug until you believe that are correct.

GosperL GosperR mutually recursive

. Before you submit, make sure classes and are indented properly. Then, click the javadoc
button and look at the API specs produced by that click. Check each method spec in and to be sure that exactly
what a call on the method does can be determined from the spec. If you don't do this, you will lose a lot of points.

What to submit MyTurtle Ball

MyTurtle Ball

Submit files and .MyTurtle.java Ball.java

