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For Loops

Reading: Secs 7.5-7.6

Quote for the Day:

Perhaps the most valuable result of all education is the ability to

make yourself do the thing you have to do, when it ought to be

done, whether you like it or not; it is the first lesson that ought to

be learned; and however early a man's training begins, it is

probably the last  lesson that he learns thoroughly.

                                         Thomas Henry Huxley

                                         1825 - 1895

                                         Technical Education, 1877

Find the quotient q and remainder y when x is divided by y

// pre: x ! 0  and  y > 0

int r= x;

int q= 0;

// invariant:  x = q*y + r   and   0 " r

while (r >= y) {

      q= q + 1;

      r= r – y;

}

// post:  x = q*y + r   and   0 " r < y

(We did this last lecture)

Notes:

1. the postcondition defines the

properties of quotient q and

remainder r.

2. The invariant was found from

the postcondition by seeing that

all by  r < y  was easily truthified

by setting r to x and q to 0 —but

relation r < y then need not be

true (so it was deleted).

3. We didn’t make progress with

r= r–1; because we can’t then fix

the invariant.

4. The following relation helps us

see that the invariant is kept true:

    q*y + r  =  (q+1)*y + (r–y)

Linear algorithm to compute a**b

// pre: b ! 0

double z= 1;

int k= 0;

// invariant:  z = a**k

while (k != b) {

      z= z * a;

      k= k+1;

}

// post:  z = a**b

(We did this last lecture)

1. The loop process the range of integers

0..b–1. For each one, it multiplies z by a.

2. Execution of the loop requires b iterations.

This can be a huge number. To compute

2**32767 requires 32767 iterations!

On the next slide, we show a different

algorithm that requires much fewer iterations.

“logarithmic” algorithm to compute a**b

// pre: b ! 0

double z= 1;

double x= a;

int y= b;

// invariant:  z*x**y = a**b

//                   and  y ! 0

while (y != 0) {

    if  (y % 2 == 0)

           {x= x*x; y= y/2;}

    else {z= z*x; y= y–1;}

}

// post:  z = a**b

(We did this last lecture)

1. In the case y is even, we see that the

invariant is kept true because of this formula:

                  x**y  =  (x*x)**(y/2)

2. In the case y is odd, we see that the invariant

is kept true because of this formula:

                 z*x**y  =  z*x*x**(y–1)

32767 = 2**15 – 1  in binary is  111111111111111    (15  1’s)

So, calculating 1.000001**32767  needs only 30 iterations of the loop! The

algorithm on the previous slide requires 32767 iterations.

3. The loop processes the bits of the binary

representation of y. Each bit is processed at

most twice:  Example: calculate a**7

7 is 111 in binary: 111 ! 110 ! 11 ! 10 ! 1 ! 0

The for-loop

// precondition: n >= 0

int k= 1;

x= 0;

// inv: x = sum of 1..(k-1)

while (k != n) {

x= x + k;

k= k+1;

}

// postcondition: x = sum of 1..(n-1)

k is a loop counter. Initialized

before the loop and changed only

in the last statement of the repetend

of the while-loop

The for-loop: an abbreviation of a while loop with a loop counter

// pre: n >= 0

int k= 1;

x= 0;

// inv: x = sum of 1..(k-1)

while (k != n) {

x= x + k;

k= k+1;

}

// post: x = sum of 1..(n-1)

k is a loop counter. Initialized before

loop; changed only in last statement

of the repetend of the while-loop

// pre: n >= 0

x= 0;

// inv: x = sum of 1..(k-1)

for (int k = 1;  k != n;  k= k+1) {

x= x + k;

}

// post: x = sum of 1..n-1

for-loop collects, within the parentheses following for, everything to

do with initialization of loop counter, stopping, and making progress.



Syntax and semantics of the for loop

k is a loop counter. Initialized

before the loop and not changed in

the repetend of the for-loop.

x= 0;

// inv: x = sum of 1..(k-1)

for (int k = 1;  k != 20;  k= k+1) {

x= x + k;

}

// x = sum of 1..19

for ( initialization ; condition ; progress ) {

repetend

}

meaning of for-loop:

initialization

while ( condition ) {

repetend

    progress

}

Find the quotient q and remainder y when x is divided by y

// pre: x ! 0  and  y > 0

int r= x;

int q= 0;

// invariant:  x = q*y + r  and   0 " r

while (r >= y) {

      q= q + 1;

      r= r – y;

}

// post:  x = q*y + r   and   0 " r < y

// pre: x ! 0  and  y > 0

int q= 0;

// invariant:  x = q*y + r   and   0 " r

for (int r= x;   r >= y;   r= r – y) {

     q= q + 1;

}

// post:  x = q*y + r   and   0 " r < y

r is a loop counter. Initialized before the

loop and changed only in the last statement

of the repetend of the while-loop

Scope of the counter of a for-loop

x= 0;

// inv: x = sum of 1..(k-1)

for ( int k = 1;  k != 20;  k= k+1) {

x= x + k;

}

// x = sum of 1..19

System.out.println(k);

x= 0;

int k= 1;

// inv: x = sum of 1..(k-1)

while (k != 20) {

x= x + k;

k= k + 1;

}

// x = sum of 1..19

System.out.println(k);
Illegal: Scope of k

is only the loop.

A for-loop schema to process a range of integers

// Process m..n

// inv: m..k-1 has been processed

           and m <= k <= n+1

for (int k= m;  k <= n;  k= k+1) {

Process k;

}

// Post: m..n has been processed

Use the schema to count number of ‘e’s in a string

// Process m..n

// inv: m..k-1 processed, m <= k <= n+1

for (int k= m; k <= n; k= k+1) {

Process k;

}  // Post: m..n processed

// Store in x the no. of ‘e’s in s[0..s.length()-1]

// inv: m..k-1 processed, m <= k <= n+1
          x = no.of ‘e’s in s[0..k-1]

for (int k= m; k <= n; k= k+1) {

Process k;

} // Post: m..n processed

Example:

s = “sequioa”, x = 1

s = “defense”, x = 2

m:

n:

Which loop condition do you like better? And why?

// Process 0..n

k= 1;

// inv: 0..k-1 processed, 0 <= k <= n+1

while (k <= n) {

      Process k;

      k= k+1;

}

// post: 0..n processed

// Process 0..n

k= 1;

// inv: 0..k-1 processed, 0 <= k <= n+1

while (k != n+1) {

      Process k;

      k= k+1;

}

// post: 0..n processed


