CS100J March 15, 2005
For Loops
Reading: Secs 7.5-7.6

Quote for the Day:

Perhaps the most valuable result of all education is the ability to make yourself do the thing you have to do, when it ought to be done, whether you like it or not; it is the first lesson that ought to be learned; and however early a man's training begins, it is probably the last lesson that he learns thoroughly.

Thomas Henry Huxley
1825-1895
Technical Education, 1877

Find the quotient q and remainder y when x is divided by y
// pre: $\mathrm{x} \geq 0$ and $\mathrm{y}>0$ (We did this last lecture)
int $\mathrm{r}=\mathrm{x}$;
int $\mathrm{q}=0$;
// invariant: $x=q^{*} y+r$ and $0 \leq r$ 2. The invariant was found from
while ($\mathrm{r}>=\mathrm{y}$) $\{$
$\mathrm{q}=\mathrm{q}+1$;
$r=r-y ;$
\}
// post: $x=q^{*} y+r$ and $0 \leq r<y$

Notes:

1. the postcondition defines the properties of quotient q and remainder r.
the postcondition by seeing that all by $r<y$ was easily truthified by setting r to x and q to $0-$ but relation $r<y$ then need not be true (so it was deleted).
2. We didn't make progress with $r=r-1$; because we can't then fix the invariant.
3. The following relation helps us see that the invariant is kept true:

$$
q^{*} y+r=(q+1) * y+(r-y)
$$

Linear algorithm to compute $\mathbf{a}^{* *} \mathbf{b}$

// pre: $\mathrm{b} \geq 0$

(We did this last lecture)
double $\mathrm{z}=1$;
int $\mathrm{k}=0$;
// invariant: $z=a^{* *} k$
while ($k!=b$) \{
$\mathrm{z}=\mathrm{z}$ * a ;
$\mathrm{k}=\mathrm{k}+1$;
\}
// post: $\mathrm{z}=\mathrm{a}^{* *} \mathrm{~b}$

1. The loop process the range of integers $0 . . \mathrm{b}-1$. For each one, it multiplies z by a.
2. Execution of the loop requires b iterations. This can be a huge number. To compute $2^{* *} 32767$ requires 32767 iterations!

On the next slide, we show a different algorithm that requires much fewer iterations.

The for-loop
// precondition: $\mathrm{n}>=0$
int $\mathrm{k}=1$;
$\mathrm{x}=0$;
// inv: $\mathrm{x}=$ sum of $1 . .(\mathrm{k}-1)$
while ($\mathrm{k}!=\mathrm{n}$) \{
$\mathrm{x}=\mathrm{x}+\mathrm{k}$;
k is a loop counter. Initialized before the loop and changed only in the last statement of the repetend of the while-loop
$\mathrm{k}=\mathrm{k}+1$;
\}
// postcondition: $\mathrm{x}=$ sum of $1 . .(\mathrm{n}-1)$

The for-loop: an abbreviation of a while loop with a loop counter

// pre: $\mathrm{n}>=0$	// pre: $\mathrm{n}>=0$
int $\mathrm{k}=1$;	$\mathrm{x}=0$;
$\mathrm{x}=0$;	// inv: $\mathrm{x}=$ sum of 1..(k-1)
// inv: $\mathrm{x}=$ sum of 1..(k-1)	for (int $k=1 ; \mathrm{k}!=\mathrm{n} ; \mathrm{k}=\mathrm{k}+1$) \{
while (k ! $=\mathrm{n}$) \{	$\mathrm{x}=\mathrm{x}+\mathrm{k} ;$
$\mathrm{x}=\mathrm{x}+\mathrm{k}$;	\}
$\mathrm{k}=\mathrm{k}+1$;	// post: $\mathrm{x}=$ sum of 1..n-1
\}	k is a loop counter. Initialized before
// post: $\mathrm{x}=$ sum of 1..($\mathrm{n}-1$)	loop; changed only in last statement of the repetend of the while-loop

for-loop collects, within the parentheses following for, everything to do with initialization of loop counter, stopping, and making progress.

Syntax and semantics of the for loop
for (initialization ; condition ; progress) \{
repetend
\}
meaning of for-loop:
initialization
while (condition) \{
repetend

$$
\left.\begin{array}{|l|}
\hline \mathrm{x}=0 ; \\
/ / \text { inv: } \mathrm{x}=\operatorname{sum} \text { of } 1 . .(\mathrm{k}-1) \\
\text { for }(\text { int } \mathrm{k}=1 ; \mathrm{k}!=20 ; \mathrm{k}=\mathrm{k}+1)\{ \\
\quad \mathrm{x}=\mathrm{x}+\mathrm{k} ; \\
\} \\
/ / \mathrm{x}=\text { sum of } 1 . .19
\end{array} \right\rvert\, \begin{aligned}
& \mathrm{k} \text { is a loop counter. Initialized } \\
& \text { before the loop and not changed in } \\
& \text { the repetend of the for-loop. }
\end{aligned}
$$

progress
\}

Find the quotient q and remainder y when x is divided by y

```// pre: \(\mathrm{x} \geq 0\) and \(\mathrm{y}>0\) int \(\mathrm{r}=\mathrm{x}\); int \(q=0\); // invariant: \(x=q^{*} y+r\) and \(0 \leq r\) while ( \(\mathrm{r}>=\mathrm{y}\) ) \(\{\) \(\mathrm{q}=\mathrm{q}+1\); \(r=r-y ;\)```	```// pre: \(\mathrm{x} \geq 0\) and \(\mathrm{y}>0\) int \(q=0\); // invariant: \(x=q^{*} y+r\) and \(0 \leq r\) for (int \(r=x ; r>=y ; r=r-y)\{\) \(\mathrm{q}=\mathrm{q}+1\); \} // post: \(x=q^{*} y+r\) and \(0 \leq r<y\)```

/ pre: $\mathrm{x} \geq 0$ and $\mathrm{y}>0$
int $\mathrm{q}=0$;
// invariant: $x=q^{*} y+r$ and $0 \leq r$
$\mathrm{q}=\mathrm{q}+1$;
$\mathrm{r}=\mathrm{r}-\mathrm{y} ;$
\}
// post: $\mathrm{x}=\mathrm{q} * \mathrm{y}+\mathrm{r}$ and $0 \leq \mathrm{r}<\mathrm{y}$
$r$ is a loop counter. Initialized before the loop and changed only in the last statement of the repetend of the while-loop

Scope of the counter of a for-loop

$\mathrm{x}=0$;	$\mathrm{x}=0$;
int $\mathrm{k}=1$;	// inv: $\mathrm{x}=$ sum of 1..(k-1)
// inv: $\mathrm{x}=$ sum of 1..(k-1)	for ( int $k=1 ; \mathrm{k}!=20 ; \mathrm{k}=\mathrm{k}+1$ ) \{
while (k ! = 20) \{	$x=x+k$
$\mathrm{x}=\mathrm{x}+\mathrm{k}$;	
$\mathrm{k}=\mathrm{k}+1$;	// $\mathrm{x}=$ sum of $1 . .19$
\}	System.out.println(k);
// $\mathrm{x}=$ sum of $1 . .19$	
System.out.println(k);	Ille

## A for-loop schema to process a range of integers

$/ /$ Process $\mathrm{m} . \mathrm{n}$
// inv: $\mathrm{m} . . \mathrm{k}-1$ has been processed
and $\mathrm{m}<=\mathrm{k}<=\mathrm{n}+1$
for (int $\mathrm{k}=\mathrm{m} ; \mathrm{k}<=\mathrm{n} ; \mathrm{k}=\mathrm{k}+1)\{$
Process $\mathrm{k} ;$
$\}$
// Post: m..n has been processed


Use the schema to count number of ' $e$ 's in a string	
```// Process m..n // inv: m..k-1 processed, \(\mathrm{m}<=\mathrm{k}<=\mathrm{n}+1\) for (int \(k=m ; k<=n ; k=k+1)\) \{ Process k; \} // Post: m..n processed // Store in \(x\) the no. of 'e's in s[0..s.length()-1] // inv: m..k-1 processed, \(\mathrm{m}<=\mathrm{k}<=\mathrm{n}+1\) \(x=\) no.of 'e's in s[0..k-1] for (int \(k=m ; k<=n ; k=k+1)\) \{ Process k; \} // Post: m..n processed```	Example:   $\mathrm{s}=$ "sequioa", $\mathrm{x}=1$   $\mathrm{~s}=$ "defense", $\mathrm{x}=2$   $\mathrm{~m}:$   $\mathrm{n}:$

Which loop condition do you like better? And why?

// Process 0..n	// Process 0..n
$\mathrm{k}=1 ;$	$\mathrm{k}=1 \text {; }$
// inv: 0..k-1 processed, $0<=\mathrm{k}<=\mathrm{n}+1$	// inv: 0..k-1 processed, $0<=\mathrm{k}<=\mathrm{n}+1$
while ($\mathrm{k}<=\mathrm{n}$) \{	while (k ! $\mathrm{n}+1$) \{
Process k;	Process k;
$\mathrm{k}=\mathrm{k}+1$;	$\mathrm{k}=\mathrm{k}+1$;
\}	
// post: 0..n processed	// post: 0..n processed

