
1

CS100J 8 March 2005

More on loops. Reading: Secs 7.1–7.3

Do the self-review exercises on pp. 235 and 242!!!

Quotes for the Day:

Instead of trying out computer programs on test cases until they are

debugged, one should prove that they have the desired properties.

John McCarthy, 1961, A basis for a mathematical theory of computation.

Testing may show the presence of errors, but never their absence.

Dijkstra, Second NATO Conf. on Software Engineering, 1969.

A week of hard work on a program can save you 1/2 hour of thinking.

Paul Gries, CS, University of Toronto, 2005.

BOOM BITS ON YOUR MIND!!

Wednesday, 9 March, 4PM – 6PM, Duffield Atrium

Showcase for 55 student computing projects

2

Understanding assertions

Suppose this assertion is true:

x = sum of 1..k

Under what extra condition is this one true?

 x = sum of 1..n

Put your answer here

Suppose this assertion is true:

x = sum of h..10

Under what extra condition is this one true?

 x = sum of 1..10

Put your answer here

Suppose this assertion is true:

no value in 2..k divides x

Under what extra condition is this one true?

 no value in 2..n–1 divides x

Put your answer here

3

Understanding assertions

This is an assertion about v

and k. It is true because

chars of v[0..3] are greater

than ‘C’ and chars of v[6..8]

are ‘Z’s.

0 1 2 3 4 5 6 7 8

X Y Z X A C Z Z Zv This is a Vector of Characters

v ! C ? all Z’s k 6

0 3 k 8

v ! C ? all Z’s k 5

0 3 k 8

v ! C all Z’s k 6

0 k 8

v ! W ? ? all Z’s k 4

0 k 8

Indicate

whether

each of

these 3

assertions

is true or

false. 4

The while loop

x= 0;

x= x + 2*2;

x= x + 3*3;

x= x + 4*4;

x= 0;

int k= 2;

while (k != 5) {

 x= x + k*k;

 k= k+1;

}

To execute the while loop:

(1) Evaluate condition k != 5;

if false, stop execution of

loop.

(2) Execute the repetend.

(3) Repeat again from step (1).

Repetend: the thing to be

repeated. The block:

 {

 …

}

5

Develop loop to store in x the sum of 1..100.

1. How should the loop start? Make range 1..k–1

empty: k= 1; x= 0;

We’ll keep this definition of x and k true:

 x = sum of 1..k–1

2. When can loop stop? What condition lets us

know that x has result? When k == 101

3. How can repetend make progress toward termination? k= k+1;

4. How do we keep def of x, h, k true? x= x + k;

Four

loopy

questions

k= 1; x= 0;

// invariant: x = sum of 1..(k–1)

while (k != 101) {

 x= x + k;

 k= k + 1;

}

// { x = sum of 1..100 } 6

Develop loop to store in x the sum of 1..100.

1. How should the loop start? Make range h..100

empty: h= 101; x= 0;

This time, we’ll keep this definition of x and k true:

 x = sum of h..100

2. When can loop stop? What condition lets us

know that x has result? When h == 1

3. How can repetend make progress toward termination? h= h – 1;

4. How do we keep def of x, h, k true? x= x + (h – 1);

Four

loopy

questions

h= 101; x= 0;

// invariant: x = sum of h..100

while (h != 1) {

 x= x + (h – 1);

 h= h – 1;

}

// { x = sum of 1..100 }

7

Develop a loop (with initialization) to store in x

the minimum of p*p – p for p in the range h..k.

E.g. for h..k the range –2..0, it’s min of

 (–2)*(–2) – 2, (–1)*(–1) – 1, 0*0 – 0

1. How should the loop start?

i= h; x= h*h – h;

We’ll keep this definition of x, h, and k true:

 x = minimum of p*p – p for p in the range h..i

2. When can loop stop? What condition lets us

know that x has result? i == k

3. Make progress toward termination? k= k + 1;

4. How do we keep def of x, h, k true?

if ((i+1)*(i+1) – (i+1) < x)

x= ((i+1)*(i+1) – (i+1);

Four

loopy

questions

8

Develop a loop (with initialization) to store in x

the minimum of p*p – p for p in the range h..k.

invariant: x = min of p*p - p for p in range h..i

1. How should the loop start? i= h; x= h*h – h;

2. When can loop stop? What condition

lets us know that x has

result? i == k

3. Make progress toward

 termination? k= k + 1;

4. How do we keep def of

x, h, k true?

if ((i+1)*(i+1) – (i+1) < x)

 x= ((i+1)*(i+1) – (i+1);

Four

loopy

questions

i= h; x= h*h – h;

// invariant: x = min of p*p – p for p

// in the range h..i

while (i != k) {

 if ((i+1)*(i+1) – (i+1) < x)

x= ((i+1)*(i+1) – (i+1);

 k= k + 1;

}

// x = min of p*p – p for p in the range h..k

9

Roach infestation!

/** = number of weeks it takes roaches to fill the apartment --see p 244 of text*/

public static int roaches() {

 double roachVol= .001; // Space one roach takes

 double aptVol= 20*20*8; // Apartment volume

 double growthRate= 1.25; // Population growth rate per week

 int w= 0; // number of weeks

 int pop= 100; // roach population after w weeks

 // inv: pop = roach population after w weeks AND

 // before week w, volume of the roaches < aptVol

 while (aptVol > pop * roachVol) {

 pop= (int) (pop * growthRate);

 w= w + 1;

 }

 return w;

 }

